[SDOI2011]计算器(BSGS)
对于操作一,用快速幂算即可
代码如下
int quickpow(int a,int b,int k)
{
int r=1;
while(b)
{
if(b&1) r=(r*a)%k;
b>>=1;
a=(a*a)%k;
}
return r;
}
对于操作二,用拓展欧几里得算法即可。
已知\(a,b,n\),求\(x\)的最小值,使得\(a*x≡b(mod p)\),可以转化为:\(a*x+p*y=b\),则要求\(gcd(a,n)|b\),否则无解。不定方程的求法可以参照这道题
\(exgcd\)代码如下
int exgcd(int a,int b,int&x,int&y)
{
if(!b)
{
x=1,y=0;
return a;
}
re int gcd=exgcd(b,a%b,y,x);
y-=(a/b)*x;
return gcd;
}
对于操作三,我们需要用到一个新的算法B(拔)S(山)G(盖)S(世),他可以快速的求出求,满足\(a^x ≡ b(mod p)\)的最小的非负整数\(x\)。
求法是将\(x\)拆分成\(i*m-j\)的形式(其中\(m\)为\(sqrt(p)\)向上取整的值,则原式化为\(a^{i*m-j} ≡ b(mod p)\)。
移向后得\(a^{i*m} ≡ b*a^j(mod p)\)
我们从\(0-m\)枚举\(j\),并将\(b*a^j\)的所有值存入哈希表中
接着在从\(1-m\)枚举\(i\),算出所有的\(a^{i*m}\)
如果一个i对应的\(a^{i*m}\)的值已经在哈希表中,则表明i*m-j为一个解,输出此时的解即可
因为j<=m,所以求出的解随i的增大而减小,所以最先求出的i所对的解,即为所求。
re int y=read(),z=read(),p=read();
re int m=ceil(sqrt(p));
if(y%p==0&&z)
{
puts("Orz, I cannot find x!");
continue;
}
//这里要特判,因为如果y%p==0了,那么不管x取何值,(y^x)%p一定为0。
a.clear();
re int now=z%p,f=quickpow(y,m,p);
a[now]=0;
for(re int i=1;i<=m;++i)
{
now=(now*y)%p;
a[now]=i;
}
now=1;
re int flag=1;
for(re int i=1;i<=m;++i)
{
now=(now*f)%p;
if(a[now])
{
re int ans=(i*m-a[now])%p;
printf("%lld\n",(ans+p)%p);
flag=0;
break;
}
}
if(flag) puts("Orz, I cannot find x!");
所有代码如下:
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define re register
#define debug printf("Now is Line : %d\n",__LINE__)
#define file(a) freopen(#a".in","r",stdin);freopen(#a".out","w",stdout)
#define int long long
map<int,int>a;
il int read()
{
re int x=0,f=1;re char c=getchar();
while(c<'0'||c>'9') {if(c=='-') f=-1;c=getchar();}
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return x*f;
}
il int quickpow(int a,int b,int k)
{
re int r=1;
while(b)
{
if(b&1) r=(r*a)%k;
b>>=1;
a=(a*a)%k;
}
return r;
}
il int exgcd(int a,int b,int&x,int&y)
{
if(!b)
{
x=1,y=0;
return a;
}
re int gcd=exgcd(b,a%b,y,x);
y-=(a/b)*x;
return gcd;
}
signed main()
{
re int T=read(),k=read();
if(k==1)
{
while(T--)
{
re int y=read(),z=read(),p=read();
printf("%lld\n",quickpow(y,z,p));
}
}
else if(k==2)
{
while(T--)
{
re int a=read(),b=read(),p=read(),x,y;
re int gcd=exgcd(a,p,x,y);
if(b%gcd) puts("Orz, I cannot find x!");
else
{
re int temp=p/gcd;
while(x<0) x+=temp;
printf("%lld\n",((x*b/gcd)%temp+temp)%temp);
}
}
}
else
{
while(T--)
{
re int y=read(),z=read(),p=read();
re int m=ceil(sqrt(p));
if(y%p==0&&z)
{
puts("Orz, I cannot find x!");
continue;
}
a.clear();
re int now=z%p,f=quickpow(y,m,p);
a[now]=0;
for(re int i=1;i<=m;++i)
{
now=(now*y)%p;
a[now]=i;
}
now=1;
re int flag=1;
for(re int i=1;i<=m;++i)
{
now=(now*f)%p;
if(a[now])
{
re int ans=(i*m-a[now])%p;
printf("%lld\n",(ans+p)%p);
flag=0;
break;
}
}
if(flag) puts("Orz, I cannot find x!");
}
}
return 0;
}
[SDOI2011]计算器(BSGS)的更多相关文章
- bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德
2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...
- 【BZOJ2242】[SDOI2011]计算器 BSGS
[BZOJ2242][SDOI2011]计算器 Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ ...
- bzoj2242: [SDOI2011]计算器 BSGS+exgcd
你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值:(快速幂) 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数:(exgcd) 3.给 ...
- bzoj2242: [SDOI2011]计算器 && BSGS 算法
BSGS算法 给定y.z.p,计算满足yx mod p=z的最小非负整数x.p为质数(没法写数学公式,以下内容用心去感受吧) 设 x = i*m + j. 则 y^(j)≡z∗y^(-i*m)) (m ...
- BZOJ 2242 [SDOI2011]计算器 | BSGS
insert的时候忘了取模了-- #include <cstdio> #include <cmath> #include <cstring> #include &l ...
- bzoj 2242 [SDOI2011]计算器——BSGS模板
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2242 第一道BSGS! 咳咳,我到底改了些什么?…… 感觉和自己的第一版写的差不多……可能是 ...
- bzoj2242 [SDOI2011]计算器——BSGS
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2242 第一次写BSGS,参考了好多好多博客: 然而看到的讲解和模板是一种写法,这道题的网上题 ...
- BZOJ 2242 [SDOI2011]计算器 BSGS+高速幂+EXGCD
题意:id=2242">链接 方法: BSGS+高速幂+EXGCD 解析: BSGS- 题解同上.. 代码: #include <cmath> #include <c ...
- BZOJ 2242 / Luogu P2485 [SDOI2011]计算器 (BSGS)
type 1type\ 1type 1 就直接快速幂 type 2type\ 2type 2 特判+求逆元就行了. type 3type\ 3type 3 BSGS板 CODE #include< ...
- bzoj 2242: [SDOI2011]计算器 & BSGS算法笔记
这题的主要难点在于第三问该如何解决 于是就要知道BSGS是怎样的一种方法了 首先BSGS是meet in the middle的一种(戳下面看) http://m.blog.csdn.net/blog ...
随机推荐
- [转帖]ODBC、OLEDB、ADO、ADO.NET
一文详解ODBC.OLEDB.ADO.ADO.NET之间的关系 2019年01月16日 21:28:38 LoveMIss-Y 阅读数:66更多 所属专栏: 白话C#高级编程 版权声明:本文为博主 ...
- VS code常用快捷方式—转载
http://www.cnblogs.com/weihe-xunwu/p/6687000.html
- java中解决小数精度问题
public class TestDouble { public static void main(String[] args) { Double d1 = 0.1; Double d2 = 0.2; ...
- python数据结构与算法第三天【时间复杂度计算方法】
最优时间复杂度(不可靠) 最坏时间复杂度(保证) 平均时间复杂度(平均状况) 不同语句的时间复杂度: (1)顺序语句:使用加法 (2)循环语句:使用乘法 (3)分支语句:使用坏时间复杂度 例如:如下代 ...
- 老男孩python学习自修第二十一天【socket】
1. 使用python编写一个静态的web服务器,能够处理静态页面的http请求 原理: a. 使用socket进行服务端和浏览器之间的通信 b. 使用多线程处理多个客户端浏览器的请求 c. 解析用户 ...
- Java对象clone()的测试
Object中自带native clone()方法. 研究了一下用法. public class DeepCopyTest { public static void main(String[] arg ...
- CS新建排版
1.拉菜单栏barmanage,去掉不要的头部和尾部 ,选择控件bar属性optionsbar 全部为false,防止菜单拖动. 2.拉一个panelcontrol属性dock 设置顶部,在拉一个p ...
- Linux下4个查找命令which、whereis、locate、find的总结
(1)which [-a] cmdname1 cmdname2 ...... 作用:locate a command,从环境变量PATH中,定位/返回与指定名字相匹配的可执行文件所在的路径 ...
- Jenkins+PowerShell持续集成环境搭建(二)控制台项目
1. 新建一个名字为HelloWorld.Console的Freesyle项目: 2. 配置源码管理: 3. 编译配置: 版本:选择MSBuild4 文件:D:\CI\Config\HelloWorl ...
- IntelliJ cannot log in to GitHub上传github报错解决
重装系统,新装的Intellij IDEA上新建的项目上传github失败,报错: invalid authentication token ... 此处多为本地git用户的用户名/邮箱,与之前设置的 ...