「SHOI2016」黑暗前的幻想乡 解题报告
「SHOI2016」黑暗前的幻想乡
sb题想不出来,应该去思考原因,而不是自暴自弃
一开始总是想着对子树做dp,但是状态压不起去,考虑用容斥消减一些条件变得好统计,结果越想越乱。
期间想过矩阵树定理,但没想清楚又被我忽略了。
其实非常简单
你对着所有的东西跑一遍生成树计数,然后你发现统计了同一个施工队的方案,然后发现可以枚举子集,就是个sb容斥了
Code:
#include <cstdio>
#include <cctype>
#include <algorithm>
const int mod=1e9+7;
const int N=20;
inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
#define mul(a,b) (1ll*(a)*(b)%mod)
int qp(int d,int k){int f=1;while(k){if(k&1)f=mul(f,d);d=mul(d,d),k>>=1;}return f;}
template <class T>
void read(T &x)
{
x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
}
struct node{int u,v;}E[N][N*N];
int n,ans,g[N][N],cnt[N];
int Gauss()
{
int f=0,ret=1;
for(int i=1;i<=n;i++)
{
int id=i;
for(int j=i;j<=n;j++)
if(g[j][i])
{
id=j;
break;
}
if(g[id][i]==0) return 0;
if(id!=i) std::swap(g[i],g[id]),f^=1;
for(int j=i+1;j<=n;j++)
{
int inv=mul(g[j][i],qp(g[i][i],mod-2));
for(int k=i;k<=n;k++)
g[j][k]=add(g[j][k],mod-mul(g[i][k],inv));
}
ret=mul(ret,g[i][i]);
}
return f?add(mod,-ret):ret;
}
int main()
{
read(n);
--n;
for(int i=1;i<=n;i++)
{
read(cnt[i]);
for(int j=1;j<=cnt[i];j++)
read(E[i][j].u),read(E[i][j].v);
}
for(int s=0;s<1<<n;s++)
{
int ct=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
g[i][j]=0;
for(int i=1;i<=n;i++)
if(s>>i-1&1)
{
for(int j=1;j<=cnt[i];j++)
{
int u=E[i][j].u,v=E[i][j].v;
g[u][v]=add(g[u][v],mod-1),g[v][u]=add(g[v][u],mod-1);
++g[u][u],++g[v][v];
}
++ct;
}
ct=(n-ct&1)?mod-1:1;
ans=add(ans,mul(ct,Gauss()));
}
printf("%d\n",ans);
return 0;
}
2019.3.12
「SHOI2016」黑暗前的幻想乡 解题报告的更多相关文章
- 【LOJ】#2027. 「SHOI2016」黑暗前的幻想乡
题解 我一开始写的最小表示法写的插头dp,愉快地TLE成60分 然后我觉得我就去看正解了! 发现是容斥 + 矩阵树定理 矩阵树定理对于有重边的图只要邻接矩阵的边数设置a[u][v]表示u,v之间有几条 ...
- 「SHOI2016」黑暗前的幻想乡
题目链接 戳我 \(Describe\) \(n−1\)个公司,每个公司能修一些边,求每条边都让不同的公司来修的生成树的方案数 \(Solution\) 这道题很明显容斥.答案就是:所有都选的生成树个 ...
- loj2027 「SHOI2016」黑暗前的幻想乡
矩阵树定理+模意义下整数高斯消元 #include <algorithm> #include <iostream> #include <cstring> #incl ...
- 「ZJOI2015」地震后的幻想乡 解题报告
「ZJOI2015」地震后的幻想乡 想了半天,打开洛谷题解一看,最高票是_rqy的,一堆密密麻麻的积分差点把我吓跑. 据说有三种解法,然而我只学会了一种最辣鸡的凡人解法. 题意:给一个无向图\(G\) ...
- Solution -「SHOI2016」「洛谷 P4336」黑暗前的幻想乡
\(\mathcal{Description}\) link. 有一个 \(n\) 个结点的无向图,给定 \(n-1\) 组边集,求从每组边集选出恰一条边最终构成树的方案树.对 \(10^9+ ...
- 【SHOI2016】黑暗前的幻想乡
题面 题解 如果没有建筑公司的限制,那么就是个\(\mathrm{Matrix\;tree}\)板子 其实有了也一样 发现\(n\leq 17\),考虑容斥 每次钦定一些建筑公司,计算它们包含的边的生 ...
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
- bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 464 Solved: 264[Submit][Sta ...
- [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)
这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...
随机推荐
- KubeCon CloudNativeCon China 2019
KubeCon CloudNativeCon China 2019 - LF Asia, LLChttps://events.linuxfoundation.cn/events/kubecon-clo ...
- Appscanner实验还原code3
# Author: Baozi #-*- codeing:utf-8 -*- import _pickle as pickle from sklearn import ensemble import ...
- java学习之—栈
/** * 栈 * Create by Administrator * 2018/6/11 0011 * 上午 10:20 **/ public class StackX { private int ...
- mysql 清除大数据表单
背景:mysql数据库中有个日志表记录高达800多万,影响了mysql的正常业务访问,现需要清理三个月之前的所有数据,大概600多万(大概13G) 方法一:传统delete from xxx,传统,普 ...
- SpringBoot之整合Mybatis范例
依赖包: <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http:/ ...
- 1064 - You have an error in your SQL syntax;
mysql 1064 错误: SQL语法错误,check the manual that corresponds to your MySQL server version for the right ...
- How to install Niresh Mavericks on PC
ed2k://|file|osx-mavericks.dmg|5653921792|f789090803e9b2c8d582813c0d4a33bf|/ diskutil list diskutil ...
- 设置和安装 BizTalk Server 2016 的必备组件
设置服务器,然后安装和配置软件必备组件. 加入本地管理员组 若要安装并配置 BizTalk Server,在本地计算机上使用管理员帐户登录到服务器. 向本地管理员组添加任何管理 BizTa ...
- servlet篇 之 servlet概念及其功能实现
Servlet概念: 在JavaWeb中,把那些可以使用浏览器通过url的形式来访问的java类,叫做servlet. servlet就是java类中的一种,只不过这种java类有一个特殊的功能,就是 ...
- HTML5-canvas-基础篇
<canvas>新元素 <canvas> 元素用于图形的绘制,通过脚本 (通常是JavaScript)来完成. <canvas> 标签只是图形容器,您必须使用脚本来 ...