「SHOI2016」黑暗前的幻想乡 解题报告
「SHOI2016」黑暗前的幻想乡
sb题想不出来,应该去思考原因,而不是自暴自弃
一开始总是想着对子树做dp,但是状态压不起去,考虑用容斥消减一些条件变得好统计,结果越想越乱。
期间想过矩阵树定理,但没想清楚又被我忽略了。
其实非常简单
你对着所有的东西跑一遍生成树计数,然后你发现统计了同一个施工队的方案,然后发现可以枚举子集,就是个sb容斥了
Code:
#include <cstdio>
#include <cctype>
#include <algorithm>
const int mod=1e9+7;
const int N=20;
inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
#define mul(a,b) (1ll*(a)*(b)%mod)
int qp(int d,int k){int f=1;while(k){if(k&1)f=mul(f,d);d=mul(d,d),k>>=1;}return f;}
template <class T>
void read(T &x)
{
x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
}
struct node{int u,v;}E[N][N*N];
int n,ans,g[N][N],cnt[N];
int Gauss()
{
int f=0,ret=1;
for(int i=1;i<=n;i++)
{
int id=i;
for(int j=i;j<=n;j++)
if(g[j][i])
{
id=j;
break;
}
if(g[id][i]==0) return 0;
if(id!=i) std::swap(g[i],g[id]),f^=1;
for(int j=i+1;j<=n;j++)
{
int inv=mul(g[j][i],qp(g[i][i],mod-2));
for(int k=i;k<=n;k++)
g[j][k]=add(g[j][k],mod-mul(g[i][k],inv));
}
ret=mul(ret,g[i][i]);
}
return f?add(mod,-ret):ret;
}
int main()
{
read(n);
--n;
for(int i=1;i<=n;i++)
{
read(cnt[i]);
for(int j=1;j<=cnt[i];j++)
read(E[i][j].u),read(E[i][j].v);
}
for(int s=0;s<1<<n;s++)
{
int ct=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
g[i][j]=0;
for(int i=1;i<=n;i++)
if(s>>i-1&1)
{
for(int j=1;j<=cnt[i];j++)
{
int u=E[i][j].u,v=E[i][j].v;
g[u][v]=add(g[u][v],mod-1),g[v][u]=add(g[v][u],mod-1);
++g[u][u],++g[v][v];
}
++ct;
}
ct=(n-ct&1)?mod-1:1;
ans=add(ans,mul(ct,Gauss()));
}
printf("%d\n",ans);
return 0;
}
2019.3.12
「SHOI2016」黑暗前的幻想乡 解题报告的更多相关文章
- 【LOJ】#2027. 「SHOI2016」黑暗前的幻想乡
题解 我一开始写的最小表示法写的插头dp,愉快地TLE成60分 然后我觉得我就去看正解了! 发现是容斥 + 矩阵树定理 矩阵树定理对于有重边的图只要邻接矩阵的边数设置a[u][v]表示u,v之间有几条 ...
- 「SHOI2016」黑暗前的幻想乡
题目链接 戳我 \(Describe\) \(n−1\)个公司,每个公司能修一些边,求每条边都让不同的公司来修的生成树的方案数 \(Solution\) 这道题很明显容斥.答案就是:所有都选的生成树个 ...
- loj2027 「SHOI2016」黑暗前的幻想乡
矩阵树定理+模意义下整数高斯消元 #include <algorithm> #include <iostream> #include <cstring> #incl ...
- 「ZJOI2015」地震后的幻想乡 解题报告
「ZJOI2015」地震后的幻想乡 想了半天,打开洛谷题解一看,最高票是_rqy的,一堆密密麻麻的积分差点把我吓跑. 据说有三种解法,然而我只学会了一种最辣鸡的凡人解法. 题意:给一个无向图\(G\) ...
- Solution -「SHOI2016」「洛谷 P4336」黑暗前的幻想乡
\(\mathcal{Description}\) link. 有一个 \(n\) 个结点的无向图,给定 \(n-1\) 组边集,求从每组边集选出恰一条边最终构成树的方案树.对 \(10^9+ ...
- 【SHOI2016】黑暗前的幻想乡
题面 题解 如果没有建筑公司的限制,那么就是个\(\mathrm{Matrix\;tree}\)板子 其实有了也一样 发现\(n\leq 17\),考虑容斥 每次钦定一些建筑公司,计算它们包含的边的生 ...
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
- bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 464 Solved: 264[Submit][Sta ...
- [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)
这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...
随机推荐
- Es5中的类和静态方法 继承
Es5中的类和静态方法 继承(原型链继承.对象冒充继承.原型链+对象冒充组合继承) // es5里面的类 //1.最简单的类 // function Person(){ // this.name='张 ...
- jquery中ajax使用
JQuery的Ajax操作,对JavaScript底层Ajax操作进行了封装, <script type="text/javascript"> $.ajax({ url ...
- html问题汇总
1.textarea换行 textarea中无法使用<br/>换行,需要使用\n 2.textarea无法提交 我们知道表单中的元素需要设置name属性才能够提交,但是如果设置了disab ...
- 5 Http请求中文乱码处理
java 乱码分很多种,这里主要研究解决http请求中出现乱码的情况. http请求出现中文乱码的主要原因:发送方与接收方编码不一致,服务器默认支持的编码与web应用不一致,如:tomcat 是国外程 ...
- MySQL基础配置之mysql的默认字符编码的设置(my.ini设置字符编码) - 转载
MySQL基础配置之mysql的默认字符编码的设置(my.ini设置字符编码) MySQL的默认编码是Latin1,不支持中文,那么如何修改MySQL的默认编码呢,下面以设置UTF-8为例来说明. 需 ...
- [转帖]Office全版本零售版转换VOL
Office全版本零售版转换VOL https://blog.51cto.com/10981246/2062137 转成bat 执行 改天试试 @ECHO OFF&PUSHD %~DP0 ...
- 【学亮开讲】Oracle存储过程教学笔记(一)20181115
--创建业主序列起始值为11 ; --不带传出参数的存储过程 create or replace procedure pro_owners_add ( v_name varchar2,--名称 v_a ...
- Laravel 5.6 模型关联 user 表后查询 user 表数据只能获取第一条数据,不知道怎么获取第二条
按照开发手册的说法,肯定是指令不够全,附代码图 如果, tests 是文章表, users 是用户表 test.com/tests/1 是 id 为 1 的文章地址( get 访问) 假如 Tests ...
- Linux基础学习笔记4-文本处理
本章内容 抽取文本的工具 文件内容:less和cat 文件截取:head和tail 按列抽取:cut 按关键字抽取:grep 文件查看 文件查看命令:cat,tac,rev cat [OPTION] ...
- LODOP暂存、应用、复原 按钮的区别
LODOP中打印设计(PRINT_DESIGN)有暂存和复原按钮,打印维护(PRINT_SETUP)有应用和复原按钮. 打印设计暂存和打印维护的应用功能不同,两者的区别:1.打印设计的暂存.复原(类似 ...