传送门


好久没有做过图论题了……

考虑\(k\)次方的组合意义,实际上,要求的所有方案中导出子图边数的\(k\)次方,等价于有顺序地选出其中\(k\)条边,计算它们在哪一些图中出现过,将所有方案计算出来的答案加起来。

对于\(k\)条边来说,如果它们占据了\(x\)个点,那么它们就会出现在\(2^{n-x}\)张图中。

那么\(k=1\)答案显然是\(m \times 2^{n-2}\)

\(k=2\)时有\(3\)种情况:①两条边重合,等价于\(k=1\);②两条边不重合但共一个顶点,对于一条边\((s,t)\),这种情况的出现的次数为\(d_s + d_t - 2\);③两条边不重合且不共顶点,等于\(M^2\)减上面两种情况的出现次数。

\(k=3\)时情况比较多:①三条边重合,等价于\(k=1\);②其中有一对边重合,等价于\(k=2\);③三元环,使用三元环计数计算;

④三条边共占据\(4\)个点:有\(A \rightarrow B \rightarrow C \rightarrow D\)和\(A \rightarrow B , A \rightarrow C , A \rightarrow D\)两种情况。第一种情况可以枚举\(BC\)边,那么出现次数就是\((d_B - 1) \times (d_C - 1)\),注意有可能出现\(AD\)共点形成三元环的情况,所以在最后需要减掉\(3 \times\)三元环个数;第二种情况直接枚举点\(A\)。

⑤三条边共占据\(5\)个点,即\(A \rightarrow B \rightarrow C , D \rightarrow E\)的情况。可以枚举\(B\),那么方案数就是\(d_B(d_B - 1)(M - 2)\)。注意在这个时候会有③和④的情况重算,记得减掉。

⑥三条边两两没有共顶点,这个就是$M^3 - $①②③④⑤

三元环计数求一下③这道题就做完了。时间复杂度\(O(M \sqrt{M})\)。注意④⑤中重算部分的系数。

下面的代码里\(k=3\)的情况③④⑤⑥都是算的无序的;可能上面的描述里有序和无序有混淆,麻烦注意。

#include<bits/stdc++.h>
using namespace std; inline int read(){
int a = 0;
char c = getchar();
while(!isdigit(c)) c = getchar();
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return a;
} #define int long long
const int MAXN = 1e5 + 7 , MOD = 1e9 + 7;
int N , M , K , s[MAXN] , t[MAXN] , in[MAXN] , pow2[MAXN]; inline int poww2(int b){return b < 0 ? 0 : pow2[b];} inline int poww(int a , int b){
int times = 1;
while(b){
if(b & 1) times = times * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return times;
} namespace solve1{
int main(){return poww2(N - 2) * M % MOD;}
} namespace solve2{
int main(){
int ans = solve1::main();
for(int i = 1 ; i <= M ; ++i){
ans = (ans + (in[s[i]] + in[t[i]] - 2) * poww2(N - 3) + (M - 1 - (in[s[i]] + in[t[i]] - 2)) * poww2(N - 4)) % MOD;
}
return ans;
}
} namespace solve3{
int col[MAXN];
vector < int > ch[MAXN]; int calc3(){
int cnt = 0;
for(int i = 1 ; i <= M ; ++i)
if(in[s[i]] < in[t[i]] || (in[s[i]] == in[t[i]] && s[i] < t[i]))
ch[s[i]].push_back(t[i]);
else ch[t[i]].push_back(s[i]);
for(int i = 1 ; i <= N ; ++i){
for(auto p : ch[i]) col[p] = i;
for(auto p : ch[i])
for(auto q : ch[p])
if(col[q] == i) ++cnt;
}
return cnt % MOD;
} int main(){
int ans = solve2::main() , tmp = solve1::main();
ans = ((ans - tmp + MOD) * 3 + tmp) % MOD;
int cnt3 = calc3() , cnt4 = MOD - cnt3 * 3 % MOD , cnt5 = 0 , cnt6 = 0;
for(int i = 1 ; i <= N ; ++i)
cnt4 = (cnt4 + in[i] * (in[i] - 1) * (in[i] - 2) / 6) % MOD;
for(int i = 1 ; i <= M ; ++i)
cnt4 = (cnt4 + (in[s[i]] - 1) * (in[t[i]] - 1)) % MOD;
cnt5 = MOD - (cnt4 * 2 + cnt3 * 3) % MOD;
for(int i = 1 ; i <= N ; ++i)
cnt5 = (cnt5 + MOD - in[i] * (in[i] - 1) * (in[i] - 2) / 6 % MOD) % MOD;
for(int i = 1 ; i <= N ; ++i)
cnt5 = (cnt5 + in[i] * (in[i] - 1) * (M - 2) / 2) % MOD;
cnt6 = (M * (M - 1) * (M - 2) / 6 - cnt5 - cnt4 - cnt3) % MOD;
return (ans + 6 * (cnt3 * poww2(N - 3) + cnt4 * poww2(N - 4) + cnt5 * poww2(N - 5) + cnt6 * poww2(N - 6))) % MOD;
}
} signed main(){
pow2[0] = 1;
for(int i = 1 ; i <= 100000 ; ++i)
pow2[i] = (pow2[i - 1] << 1) % MOD;
for(int T = read() ; T ; --T){
N = read(); M = read(); K = read();
memset(in , 0 , sizeof(int) * (N + 1));
memset(solve3::col , 0 , sizeof(int) * (N + 1));
for(int i = 1 ; i <= N ; ++i)
solve3::ch[i].clear();
for(int i = 1 ; i <= M ; ++i){
s[i] = read(); t[i] = read();
++in[s[i]]; ++in[t[i]];
}
if(K == 1) cout << solve1::main() << endl;
else if(K == 2) cout << solve2::main() << endl;
else cout << solve3::main() << endl;
}
return 0;
}

Codechef SUMCUBE Sum of Cubes 组合、三元环计数的更多相关文章

  1. 【BZOJ5332】[SDOI2018]旧试题(数论,三元环计数)

    [BZOJ5332][SDOI2018]旧试题(数论,三元环计数) 题面 BZOJ 洛谷 题解 如果只有一个\(\sum\),那么我们可以枚举每个答案的出现次数. 首先约数个数这个东西很不爽,就搞一搞 ...

  2. loj#6076「2017 山东一轮集训 Day6」三元组 莫比乌斯反演 + 三元环计数

    题目大意: 给定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) ...

  3. BZOJ.5407.girls/CF985G. Team Players(三元环计数+容斥)

    题面 传送门(bzoj) 传送门(CF) \(llx\)身边妹子成群,这天他需要从\(n\)个妹子中挑出\(3\)个出去浪,但是妹子之间会有冲突,表现为\(i,j\)之间连有一条边\((i,j)\), ...

  4. LOJ2565 SDOI2018 旧试题 莫比乌斯反演、三元环计数

    传送门 这道题的思路似乎可以给很多同时枚举三个量的反演题目提供一个很好的启发-- 首先有结论:\(d(ijk) = \sum\limits_{x|i}\sum\limits_{y|j}\sum\lim ...

  5. [hdu 6184 Counting Stars(三元环计数)

    hdu 6184 Counting Stars(三元环计数) 题意: 给一张n个点m条边的无向图,问有多少个\(A-structure\) 其中\(A-structure\)满足\(V=(A,B,C, ...

  6. HDU 6184 Counting Stars 经典三元环计数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6184 题意: n个点m条边的无向图,问有多少个A-structure 其中A-structure满足V ...

  7. HDU6184【Counting Stars】(三元环计数)

    题面 传送门 给出一张无向图,求 \(4\) 个点构成两个有公共边的三元环的方案数. 题解 orz余奶奶,orz zzk 首先,如果我们知道经过每条边的三元环个数\(cnt_i\),那么答案就是\(\ ...

  8. FJWC2019 子图 (三元环计数、四元环计数)

    给定 n 个点和 m 条边的一张图和一个值 k ,求图中边数为 k 的联通子图个数 mod 1e9+7. \(n \le 10^5, m \le 2 \times 10^5, 1 \le k \le ...

  9. hdu6184 Counting Stars 【三元环计数】

    题目链接 hdu6184 题解 题意是让我们找出所有的这样的图形: 我们只需要求出每条边分别在多少个三元环中,记为\(x\),再然后以该点为中心的图形数就是\({x \choose 2}\) 所以我们 ...

随机推荐

  1. SSIS 包部署错误 0xC0010014

    SSIS 包部署错误 0xC0010014 Reinhard 在部署 SSIS 包时,提示如下错误. 由于错误 0xC0010014"发生了一个或多个错误.在此消息之前应有更为具体的错误消息 ...

  2. 手把手教你全家桶之React(三)--完结篇

    前言 本篇主要是讲一些全家桶的优化与完善,基础功能上一篇已经讲得差不多了.直接开始: Source Maps 当javaScript抛出异常时,我们会很想知道它发生在哪个文件的哪一行.但是webpac ...

  3. 2018(2017)美图java服务端笔试(回忆录)

    选择题有几道,是比较基础的 填空题两道:一道是类似c语言的给出abc的值求 ++a+b+++c++  ,另一道是说出两个常见的垃圾回收算法 编程题 找出出现次数为1的数字然后改进(要求O(n)) 数据 ...

  4. [20181109]12cR2 的pre_page_sga参数

    [20181109]12cR2 的pre_page_sga参数.txt --//12CR2改变了参数pre_page_sga设置为True.设置为true有好处也有缺点.--//先看看官方的定义:ht ...

  5. Navicat Premium 连接oracle ORA-01017:用户名/口令无效;登陆被拒绝

    解决的方法就是将用户名改成system

  6. 自动化测试基础篇--Selenium中数据参数化之TXT

    摘自https://www.cnblogs.com/sanzangTst/p/7722594.html 一.搜索参数化 在TXT文件中保存需要搜索的内容: 测试代码: 1 #!/usr/bin/env ...

  7. 初识Spring Boot

    ​ 1.Spring Boot简介 Spring Boot是由Pivotal团队提供的全新框架,用于简化基于Spring的搭建与开发过程,通过少量的代码创建Spring应用. 2.Spring Boo ...

  8. Elasticsearch深入搜索之全文搜索及JavaAPI使用

    一.基于词项与基于全文 所有查询会或多或少的执行相关度计算,但不是所有查询都有分析阶段. 和一些特殊的完全不会对文本进行操作的查询(如 bool 或 function_score )不同,文本查询可以 ...

  9. c/c++ 友元的简单应用

    友元的简单应用 1,对象 + 对象,或者,对象 + 数字,可以用类的成员函数去重载+号函数,但是,数字 + 对象就不能用类的成员函数去重载+号函数了, 因为编译器会把数字 + 对象翻译成数字.oper ...

  10. mac os 10.12 Sierra 连接 惠普 M1136 MFP 打印机,通过 samba 协议,安装驱动,连接打印机

    参考链接: https://support.hp.com/hk-zh/product/hp-zbook-17-g3-mobile-workstation/8693765/document/c04530 ...