洛谷题目传送门

一血祭

向dllxl致敬!

算是YNOI中比较清新的吧,毕竟代码只有1.25k。

首先我们对着题意模拟,寻找一些思路。

每次选了一个最大的数后,它和它周围两个数都要减一。这样无论如何,我们都选不到旁边那两个数,只有第一次选的那个数会对答案产生它的大小的贡献。

于是就可以写出一个\(O(nm\log n)\)的暴力用来对拍了

#include<bits/stdc++.h>
#define LL long long
#define R register int
#define G if(++ip==ie)if(fread(ip=buf,1,SZ,stdin))
using namespace std;
const int SZ=1<<19,N=1e5+9;
char buf[SZ],*ie=buf+SZ,*ip=ie-1;
inline int in(){
G;while(*ip<'-')G;
R x=*ip&15;G;
while(*ip>'-'){x*=10;x+=*ip&15;G;}
return x;
}
int a[N],b[N];
bool vis[N];
inline bool Cmp(R&x,R y){
return a[x]>a[y]||(a[x]==a[y]&&x<y);
}
int main(){
R n=in();
for(R i=1;i<=n;++i)a[i]=in();
for(R q=in();q--;){
a[in()]=in();
for(R i=1;i<=n;++i)b[i]=i;
sort(b+1,b+n+1,Cmp);
memset(vis+1,0,n);
LL ans=0;
for(R i=1;i<=n;++i){
if(vis[b[i]])continue;
vis[b[i]-1]=vis[b[i]]=vis[b[i]+1]=1;
ans+=a[b[i]];
}
printf("%lld\n",ans);
}
return 0;
}

进一步观察,对于一个序列中的一个极长单调区间,我们取到了最大的、第三大的、第五大的。。。

考虑用set维护好序列的所有极值点,相邻两个极值点所包含区间的贡献就可以通过树状数组查区间和直接算(注意分奇偶)。

单点修改的时候,只会影响到自己周围至多三个的极值点状态、以及左右各至多两个区间的单调性,暴力删掉原来的贡献再加新的贡献就好了。

统计答案时细节很多,边界问题也很多,想清楚后再动手还是很舒服的。

时间复杂度\(O((n+m)\log n)\),因为数据范围不怎么卡(这一点也是YNOI极罕见的)所以蒟蒻直接牺牲常数来减少代码长度了qaq

#include<bits/stdc++.h>
#define LL long long
#define I inline
#define R register int
#define G if(++ip==ie)if(fread(ip=buf,1,SZ,stdin))
using namespace std;
typedef set<int>::iterator IT;
const int SZ=1<<19,N=1e5+9;
char buf[SZ],*ie=buf+SZ,*ip=ie-1;
inline int in(){
G;while(*ip<'-')G;
R x=*ip&15;G;
while(*ip>'-'){x*=10;x+=*ip&15;G;}
return x;
}
int n,a[N];LL ans;set<int>s;
struct BIT{
LL a[N];
I void Upd(R i,R v){
for(;i<N;i+=i&-i)a[i]+=v;
}
I void Qry(R l,R r,LL v){
for(R i=r;i;i-=i&-i)v+=a[i];
for(R i=l;i;i-=i&-i)v-=a[i];
}
}b[2];
#define ODD(O) ((*l^*O(j=l))&1)
I void Calc(IT l,IT r,R op){
IT i,j;LL sum=*l&&a[*l+1]>a[*l]&&!ODD(--)&&!ODD(++)?a[*l]:0;
for(i=l++;i!=r;i=l++)
if(a[*l]>a[*i])b[*l&1].Qry(*i,*l,sum);
else b[*i&1].Qry(*i,*l-ODD(++),sum);
ans+=sum*op;
}
I void Chk(R x){
if((a[x]>a[x-1])!=(a[x+1]>a[x]))s.insert(x);
else s.erase(x);
}
I void Upd(R x){
R y=in();
IT i=s.lower_bound(x),l=i,r=i;
--l;if(l!=s.begin())--l;
++r;if(r==s.end()||(*i==x&&++r==s.end()))--r;
Calc(l,r,-1);
b[x&1].Upd(x,y-a[x]);a[x]=y;
Chk(x);if(x>1)Chk(x-1);if(x<n)Chk(x+1);
Calc(l,r,1);
}
int main(){
n=in();s.insert(0);s.insert(n+1);
for(R i=1;i<=n;++i)Upd(i);
for(R q=in();q;--q)Upd(in()),printf("%lld\n",ans);
return 0;
}

洛谷P5069 [Ynoi2015]纵使日薄西山(树状数组,set)的更多相关文章

  1. [洛谷P1198/BZOJ1012][JSOI2008] 最大数 - 树状数组/线段树?

    其实已经学了树状数组和线段树,然而懒得做题,所以至今没写多少博客 Description 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数 ...

  2. 洛谷P3688/uoj#291. [ZJOI2017]树状数组

    传送门(uoj) 传送门(洛谷) 这里是题解以及我的卡常数历程 话说后面那几组数据莫不是lxl出的这么毒 首先不难发现这个东西把查询前缀和变成了查询后缀和,结果就是查了\([l-1,r-1]\)的区间 ...

  3. 洛谷P3368 【模板】树状数组 2

    P3368 [模板]树状数组 2 102通过 206提交 题目提供者HansBug 标签 难度普及/提高- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 如题,已知一个数列,你需要进行下面两 ...

  4. 洛谷P3374 【模板】树状数组 1

    P3374 [模板]树状数组 1 140通过 232提交 题目提供者HansBug 标签 难度普及/提高- 提交  讨论  题解 最新讨论 题目描述有误 题目描述 如题,已知一个数列,你需要进行下面两 ...

  5. 洛谷 P3368 【模板】树状数组 2

    题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数数加上x 2.求出某一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别表示该数列数字的个数和操作的总个数. ...

  6. 洛谷 P3374 【模板】树状数组 1

    题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某一个数加上x 2.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别表示该数列数字的个数和操作的总个数. ...

  7. 树状数组模板(pascal) 洛谷P3374 【模板】树状数组1

    题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某一个数加上x 2.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别表示该数列数字的个数和操作的总个数. ...

  8. 洛谷 P3368 【模板】树状数组 2(区间修改点查询)

    题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数数加上x 2.求出某一个数的值 输入输出格式 输入格式: 第一行包含两个整数N.M,分别表示该数列数字的个数和操作的总个数. ...

  9. 洛谷 P3368 【模板】树状数组 2 题解

    P3368 [模板]树状数组 2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数数加上x 2.求出某一个数的值 输入格式 第一行包含两个整数N.M,分别表示该数列数字的个 ...

随机推荐

  1. js总结:利用js获取下拉框的value值和文本值

    select下拉框在项目开发中是经常用到的,特别是在联级菜单方面的应用更为广泛.但是,对于一些初学者来说,如何获取下拉框子节点option的value值和文本内容,还是有一点难度的. html代码: ...

  2. window端编码到Linux允许脚本 笔记

    昨天升级一个服务,发现没有现成的启动脚本.就随手写了一个,一运行发现不行.竟然报错说找不到文件,No such file or directory [nohup: cannot run command ...

  3. 用Python删除本地目录下某一时间点之前创建的文件

    参考http://www.cnblogs.com/iderek/p/8035757.html os.listdir(dirname):列出dirname下的目录和文件 os.getcwd():获得当前 ...

  4. SSH框架整合实现Java三层架构实例(一)

    HTML前台发送请求代码: <tr> <td>选择收派时间</td> <td> <input type="text" name ...

  5. Appscanner实验还原code3

    # Author: Baozi #-*- codeing:utf-8 -*- import _pickle as pickle from sklearn import ensemble import ...

  6. java学习之—链表(3)

    /** * 使用链表实现队列 * Create by Administrator * 2018/6/19 0019 * 下午 4:37 **/ public class Link { public l ...

  7. Prism框架中加载类库中时其中第三方类dll提示无法加载程序集

    Prism框架是采用一种依赖注入的方式动态加载程序集,能够在程序需要加载的时候将程序集注入到里面去,实现程序的热插拔效果,而且采用这种框架能够让我们进行一个大项目的独立开发,在最近的一个项目中在独立开 ...

  8. Antd & ice

    Antd & ice Angular https://github.com/NG-ZORRO/ng-zorro-antd https://ng.ant.design/docs/introduc ...

  9. 莫烦theano学习自修第十天【保存神经网络及加载神经网络】

    1. 为何保存神经网络 保存神经网络指的是保存神经网络的权重W及偏置b,权重W,和偏置b本身是一个列表,将这两个列表的值写到列表或者字典的数据结构中,使用pickle的数据结构将列表或者字典写入到文件 ...

  10. Java权限访问修饰符

    私有的,以 private 修饰符指定,在同一类内可见. 默认的,也称为 default,在同一包内可见,不使用任何修饰符. 受保护的,以 protected 修饰符指定,对同一包内的类和所有子类可见 ...