MT【303】估计
(2016浙江填空压轴题)
已知实数$a,b,c$则 ( )
A.若$|a^2+b+c|+|a+b^2+c|\le1,$则$a^2+b^2+c^2<100$
B.若$|a^2+b+c|+|a+b^2-c|\le1,$则$a^2+b^2+c^2<100$
C.若$|a+b+c|+|a+b-c|\le1,$则$a^2+b^2+c^2<100$
D.若$|a^2+b+c|+|a+b^2-c|\le1,$则$a^2+b^2+c^2<100$

分析:利用排除法
A中令$c=-10,a=b,a^2+a-10=0$
B中令$c=0,b=-10,a^2=10$
C中令$c=0,a=10,b=-10$
故选D.D中$1\ge|a^2+b+c|+|a+b^2-c|\ge|a^2+a+b^2+b|=|(a+\dfrac{1}{2})^2+(b+\dfrac{1}{2})^2-\dfrac{1}{2}|$
易得$\dfrac{3}{2}\ge(a+\dfrac{1}{2})^2+(b+\dfrac{1}{2})^2\ge(a+\dfrac{1}{2})^2$故$a^2<4$同理$b^2<4$
$1\ge|a^2+b+c|+|a+b^2-c|\ge|a^2+b+c|$故$c^2<92$,得$a^2+b^2+c^2<100$
注:若$|a^2+ b + c| + |b^2 + a - c|\le1$, 则$a^2 + b^2 + c^2\le9.9032\cdots$是
$65536k^8 - 1327104k^7 + 8736256k^6 - 21760832k^5 + 18368665k^4$
$- 11528502k^3 + 9119692k^2 - 4451760k + 792768=0$
的最大实根.
注:
$a^2 + b^2 + c^2 < 7 + 4(a^2 + b + c)^2 + 4(b^2 + a - c)^2\le7 + 4[|a^2 + b + c| + |b^2 + a - c|]^2\le11.$
练习:已知$x,y\in R$( )
A.若$|x-y^2|+|x^2+y|\le1$,则$(x+\dfrac{1}{2})^2+(y-\dfrac{1}{2})^2\le\dfrac{3}{2}$
B.若$|x-y^2|+|x^2-y|\le1$,则$(x-\dfrac{1}{2})^2+(y-\dfrac{1}{2})^2\le\dfrac{3}{2}$
C.若$|x+y^2|+|x^2-y|\le1$,则$(x+\dfrac{1}{2})^2+(y+\dfrac{1}{2})^2\le\dfrac{3}{2}$
D.若$|x+y^2|+|x^2+y|\le1$,则$(x-\dfrac{1}{2})^2+(y+\dfrac{1}{2})^2\le\dfrac{3}{2}$
分析:排除法,A中令 $x=\dfrac{1}{2},y=-\dfrac{1}{2}$
C中令 $x=\dfrac{1}{2},y=\dfrac{1}{2}$
D中令 $x=-\dfrac{1}{2},y=\dfrac{1}{2}$
故选B
MT【303】估计的更多相关文章
- MT【273】2014新课标压轴题之$\ln2$的估计
已知函数$f(x)=e^x-e^{-x}-2x$(1)讨论$f(x)$的单调性;(2)设$g(x)=f(2x)-4bf(x),$当$x>0$时,$g(x)>0,$求$b$的最大值;(3)已 ...
- MT【162】渐近估计
(2017北大优特测试第八题) 数列 \(\{a_n\}\) 满足 \(a_1=1\),\(a_{n+1}=a_n+\dfrac{1}{a_n}\),若 \(a_{2017}\in (k,k+1)\) ...
- MT【121】耐克数列的估计
已知$\{a_n\}$满足$a_1=1,a_2=2,\dfrac{a_{n+2}}{a_n}=\dfrac{a_{n+1}^2+1}{a_n^2+1}$, 求$[a_{2017}]$_____ 解:容 ...
- MT【111】画图估计
评:此类方程是超越方程,一般情况下无法解出具体的解,常见手段:1.画图 2.猜根.此处可以取特殊值a=2.5,b=3.5,容易知道此时$x=2.5\in(2,3)$
- 多点触摸(MT)协议(翻译)
参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...
- 关于电脑玩MT以及多开的方法
方法是转的别人的首先感谢原创者!!上四开屏幕截图,因为小伙伴需要8张卡,所以我四个四个一起练.8开我的电脑估计都有压力,五开六开可能没问题,但是为了方便就四开,练完四个再练四个.图接下来说下多开模拟器 ...
- /MT /MD /ML /MTd /MDd /MLd 的区别
Multithreaded Libraries Performance The single-threaded CRT is no longer ( in vs2005 ) available. Th ...
- java开发3轮技术面+hr面 面经(MT)
一直没打理博客园 发现博客园阅读量好大,就把前段时间写的一个面经也搬过来咯,大家一起加油.... 作者:小仇Eleven 链接:https://www.nowcoder.com/discuss/37 ...
- /MD、/MT、/LD( 使用 多线程版本 运行时库的C runtime library)
/MD./MT./LD(使用运行时库)(微软官网解释) Visual C++ 编译器选项 /MD./ML./MT./LD 区别 指定与你项目连接的运行期库 /MT多线程应用程序 /Mtd多线程应用程序 ...
随机推荐
- H5 表单标签
33-表单标签3 列表数据 注意点: 1.下拉列表不能输入内容, 但是可以直接在列表中选择内容 2.可以通过给option标签添加一个selected属性来指定列表的默认值 3.可以通过给option ...
- Linux进程与线程的区别
进程与线程的区别,早已经成为了经典问题.自线程概念诞生起,关于这个问题的讨论就没有停止过.无论是初级程序员,还是资深专家,都应该考虑过这个问题,只是层次角度不同罢了.一般程序员而言,搞清楚二者的概念, ...
- PS 十分钟教你做出文字穿插效果
- iOS QRcode识别及相册图片二维码读取识别
https://www.jianshu.com/p/48e44fe67c1d 2016.03.30 10:32* 字数 892 阅读 16197评论 5喜欢 34赞赏 1 最近碰到一个用户 在使用我们 ...
- Redis趣谈一则
今天看代码,无意中发现Redis中的一行注释: ; /* The world is full of Solaris Fixes */ 这行代码在bio.c文件中. 看来程序员对操作系统多样性吐槽多多啊 ...
- C++诡异异常处理
虽然现在C++头文件允许只编译一次,但仍然可能因为头文件引用引起问题,当出现:“构造函数初始值设定项列表只能在构造函数定义中使用”,可能的原因是头文件互相引用导致的. 出现“error LNK1120 ...
- latex中插入eps文件
\documentclass{article} \usepackage{graphicx}\usepackage{epstopdf} \begin{document}\begin{figure} \ ...
- [转帖]2015年时微软Win3.1崩溃迫使巴黎奥利机场短暂关闭
https://www.ithome.com/html/it/188796.htm IT之家讯 2015年11月14日消息,上周法国巴黎奥利机场因为微软的Windows 3.1系统出现故障不得不迫使所 ...
- spring IOC源码分析(ApplicationContext)
在上一篇文章中,我们以BeanFactory这条主线进行IOC的源码解析的,这里,将以ApplicationContext这条线进行分析.先看使用方法: @Test public void testA ...
- day 7-17 多表查询
一. 准备表 #部门表 create table dep( id int, name varchar(20) ); #员工表 create table emp( id int primary key ...