<题目链接>

<转载于 >>>  >

题目大意:

有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走。现已有m条路,求至少要新建多少条路,使得任何两个牧场之间至少有两条独立的路。两条独立的路是指:没有公共边的路,但可以经过同一个中间顶点。

解题分析:

在同一个边双连通分量中,任意两点都有至少两条独立路可达,所以同一个边双连通分量里的所有点可以看做同一个点。

缩点后,新图是一棵树,树的边就是原无向图的桥。

现在问题转化为:在树中至少添加多少条边能使图变为双连通图。

结论:添加边数=(树中度为1的节点数+1)/2

具体方法为,首先把两个最近公共祖先最远的两个叶节点之间连接一条边,这样可以把这两个点到祖先的路径上所有点收缩到一起,因为一个形成的环一定是双连通的。然后再找两个最近公共祖先最远的两个叶节点,这样一对一对找完,恰好是(leaf+1)/2次,把所有点收缩到了一起。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int N = 5e3+ , M = 1e4+;
#define clr(a,b) memset(a,b,sizeof(a))
struct Edge{
int to,next;
}edge[M<<]; int head[N],low[N],dfn[N],belong[N],deg[N],stk[N],instk[N];
int n,m,tot,cnt,top,scc;
void addEdge(int u,int v){
edge[tot].to=v,edge[tot].next=head[u];
head[u]=tot++;
}
void init(){
tot=cnt=top=scc=;
clr(head,-);clr(low,);clr(dfn,);clr(instk,);clr(deg,);
}
void Tarjan(int u,int fa){
low[u]=dfn[u]=++cnt;
stk[++top]=u;instk[u]=;
for(int i=head[u];~i;i=edge[i].next){
int v=edge[i].to;
if(i==(fa^))continue; //不能用搜索树上的边来更新low值,这种写法能够用来处理重边的情况
if(!dfn[v]){
Tarjan(v,i);
low[u]=min(low[u],low[v]);
}
else if(instk[v]) //此时栈里的所有元素均属于同一边双连通分量,找连通分量的根的时候一定要规定这点,否则可能会与其他连通分量的dfn比较
low[u]=min(low[u],dfn[v]); //low值全部等于该双连通分量中最先遍历的点dfn值
}
if(dfn[u]==low[u]){
++scc;
while(true){
int v=stk[top--];
instk[v]=;
belong[v]=scc; //将该联通块中的所有点全部缩点染色
if(v==u)break;
}
}
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
init();
for(int i=;i<=m;i++){
int u,v;scanf("%d%d",&u,&v);
addEdge(u,v),addEdge(v,u);
}
Tarjan(,-);
for(int i=;i<=n;i++){
for(int j=head[i];j!=-;j=edge[j].next){
int v=edge[j].to;
if(belong[i]!=belong[v])
deg[belong[i]]++; //求出缩点后每个点的度
}
}
int sum=;
for(int i=;i<=scc;i++)if(deg[i]==)sum++; //寻找度为1的叶子节点
int ans=(sum+)/;
printf("%d\n",ans);
}
}

2018-11-07

POJ 3177 Redundant Paths (边双连通+缩点)的更多相关文章

  1. poj 3177 Redundant Paths(边双连通分量+缩点)

    链接:http://poj.org/problem?id=3177 题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新建多少条路,使得任 ...

  2. POJ 3177 Redundant Paths 边双(重边)缩点

    分析:边双缩点后,消环变树,然后答案就是所有叶子结点(即度为1的点)相连,为(sum+1)/2; 注:此题有坑,踩踩更健康,普通边双缩短默认没有无向图没有重边,但是这道题是有的 我们看,low数组是我 ...

  3. POJ 3352 Road Construction ; POJ 3177 Redundant Paths (双联通)

    这两题好像是一样的,就是3177要去掉重边. 但是为什么要去重边呢??????我认为如果有重边的话,应该也要考虑在内才是. 这两题我用了求割边,在去掉割边,用DFS缩点. 有大神说用Tarjan,不过 ...

  4. POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)

    POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...

  5. tarjan算法求桥双连通分量 POJ 3177 Redundant Paths

    POJ 3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12598   Accept ...

  6. POJ - 3177 Redundant Paths (边双连通缩点)

    题意:在一张图中最少可以添加几条边,使其中任意两点间都有两条不重复的路径(路径中任意一条边都不同). 分析:问题就是最少添加几条边,使其成为边双连通图.可以先将图中所有边双连通分量缩点,之后得到的就是 ...

  7. POJ 3177 Redundant Paths(边双连通的构造)

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13717   Accepted: 5824 ...

  8. poj 3177 Redundant Paths【求最少添加多少条边可以使图变成双连通图】【缩点后求入度为1的点个数】

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11047   Accepted: 4725 ...

  9. poj 3177 Redundant Paths(tarjan边双连通)

    题目链接:http://poj.org/problem?id=3177 题意:求最少加几条边使得没对点都有至少两条路互通. 题解:边双连通顾名思义,可以先求一下连通块显然连通块里的点都是双连通的,然后 ...

随机推荐

  1. 整理oracle 树形查询

    注:本文参考了<整理oracle 树形查询> sql树形递归查询是数据库查询的一种特殊情形,也是组织结构.行政区划查询的一种最常用的的情形之一.下面对该种查询进行一些总结: create ...

  2. Remove Duplicates from Sorted ListII

    给定一个排序链表,删除所有含有重复数字的节点,只保留原始链表中 没有重复出现 的数字. 示例 1: 输入: 1->2->3->3->4->4->5 输出: 1-&g ...

  3. SpringMVC环境搭建

    Spring MVC为展现层提供的基于MVC设计理念的优秀Web框架,是目前最主流的MVC框架之一. Spring 3.0之后完全超越Struts2,称为最优秀的MVC框架.学完SpringMVC之后 ...

  4. bzoj2973转移矩阵构造法!

    /* 构造单位矩阵(转移矩阵) 给定n*m网格,每个格子独立按照长度不超过6的操作串循环操作 对应的操作有 0-9:拿x个石头到这个格子 nwse:把这个格子的石头推移到相邻格子 d:清空该格石子 开 ...

  5. jmeter 控制线程组执行顺序

    这个要配合全局变量.if和while来实现BeanShell取样器,全局变量:${__setProperty(newswitch,${switch1},)}if条件:"${__P(newsw ...

  6. unzip文件解压

    1.记录下,遇到.zip的安装包,指定解压到某个地方 格式:unzip      压缩包名.zip  -d   存放路径  

  7. Java接口自动化测试之TestNG测试报告ExtentReports的应用(三)

    pom.xml导入包 <?xml version="1.0" encoding="UTF-8"?> <project xmlns=" ...

  8. asp.net core ioc 依赖注入

    1.生命周期 内置的IOC有三种生命周期: Transient: Transient服务在每次被请求时都会被创建.这种生命周期比较适用于轻量级的无状态服务. Scoped: Scoped生命周期的服务 ...

  9. dom操作节点之常用方法

    DOM:获取节点:{1. document.getElementById (元素id):通过元素id找到节点2. document.getElementsByClassName (元素类名classN ...

  10. ES6中const、let与var的对比详解

    对比 声明方式 变量提升 作用域 初始值 重复定义const 否   块级 需要 不允许let   否     块级 不需要 不允许var 是    函数级 不需要 允许 变量提升:const 和 l ...