POJ 3177 Redundant Paths (边双连通+缩点)
<题目链接>
<转载于 >>> >
题目大意:
有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走。现已有m条路,求至少要新建多少条路,使得任何两个牧场之间至少有两条独立的路。两条独立的路是指:没有公共边的路,但可以经过同一个中间顶点。
解题分析:
在同一个边双连通分量中,任意两点都有至少两条独立路可达,所以同一个边双连通分量里的所有点可以看做同一个点。
缩点后,新图是一棵树,树的边就是原无向图的桥。
现在问题转化为:在树中至少添加多少条边能使图变为双连通图。
结论:添加边数=(树中度为1的节点数+1)/2
具体方法为,首先把两个最近公共祖先最远的两个叶节点之间连接一条边,这样可以把这两个点到祖先的路径上所有点收缩到一起,因为一个形成的环一定是双连通的。然后再找两个最近公共祖先最远的两个叶节点,这样一对一对找完,恰好是(leaf+1)/2次,把所有点收缩到了一起。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int N = 5e3+ , M = 1e4+;
#define clr(a,b) memset(a,b,sizeof(a))
struct Edge{
int to,next;
}edge[M<<]; int head[N],low[N],dfn[N],belong[N],deg[N],stk[N],instk[N];
int n,m,tot,cnt,top,scc;
void addEdge(int u,int v){
edge[tot].to=v,edge[tot].next=head[u];
head[u]=tot++;
}
void init(){
tot=cnt=top=scc=;
clr(head,-);clr(low,);clr(dfn,);clr(instk,);clr(deg,);
}
void Tarjan(int u,int fa){
low[u]=dfn[u]=++cnt;
stk[++top]=u;instk[u]=;
for(int i=head[u];~i;i=edge[i].next){
int v=edge[i].to;
if(i==(fa^))continue; //不能用搜索树上的边来更新low值,这种写法能够用来处理重边的情况
if(!dfn[v]){
Tarjan(v,i);
low[u]=min(low[u],low[v]);
}
else if(instk[v]) //此时栈里的所有元素均属于同一边双连通分量,找连通分量的根的时候一定要规定这点,否则可能会与其他连通分量的dfn比较
low[u]=min(low[u],dfn[v]); //low值全部等于该双连通分量中最先遍历的点dfn值
}
if(dfn[u]==low[u]){
++scc;
while(true){
int v=stk[top--];
instk[v]=;
belong[v]=scc; //将该联通块中的所有点全部缩点染色
if(v==u)break;
}
}
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
init();
for(int i=;i<=m;i++){
int u,v;scanf("%d%d",&u,&v);
addEdge(u,v),addEdge(v,u);
}
Tarjan(,-);
for(int i=;i<=n;i++){
for(int j=head[i];j!=-;j=edge[j].next){
int v=edge[j].to;
if(belong[i]!=belong[v])
deg[belong[i]]++; //求出缩点后每个点的度
}
}
int sum=;
for(int i=;i<=scc;i++)if(deg[i]==)sum++; //寻找度为1的叶子节点
int ans=(sum+)/;
printf("%d\n",ans);
}
}
2018-11-07
POJ 3177 Redundant Paths (边双连通+缩点)的更多相关文章
- poj 3177 Redundant Paths(边双连通分量+缩点)
链接:http://poj.org/problem?id=3177 题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新建多少条路,使得任 ...
- POJ 3177 Redundant Paths 边双(重边)缩点
分析:边双缩点后,消环变树,然后答案就是所有叶子结点(即度为1的点)相连,为(sum+1)/2; 注:此题有坑,踩踩更健康,普通边双缩短默认没有无向图没有重边,但是这道题是有的 我们看,low数组是我 ...
- POJ 3352 Road Construction ; POJ 3177 Redundant Paths (双联通)
这两题好像是一样的,就是3177要去掉重边. 但是为什么要去重边呢??????我认为如果有重边的话,应该也要考虑在内才是. 这两题我用了求割边,在去掉割边,用DFS缩点. 有大神说用Tarjan,不过 ...
- POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)
POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...
- tarjan算法求桥双连通分量 POJ 3177 Redundant Paths
POJ 3177 Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12598 Accept ...
- POJ - 3177 Redundant Paths (边双连通缩点)
题意:在一张图中最少可以添加几条边,使其中任意两点间都有两条不重复的路径(路径中任意一条边都不同). 分析:问题就是最少添加几条边,使其成为边双连通图.可以先将图中所有边双连通分量缩点,之后得到的就是 ...
- POJ 3177 Redundant Paths(边双连通的构造)
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13717 Accepted: 5824 ...
- poj 3177 Redundant Paths【求最少添加多少条边可以使图变成双连通图】【缩点后求入度为1的点个数】
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11047 Accepted: 4725 ...
- poj 3177 Redundant Paths(tarjan边双连通)
题目链接:http://poj.org/problem?id=3177 题意:求最少加几条边使得没对点都有至少两条路互通. 题解:边双连通顾名思义,可以先求一下连通块显然连通块里的点都是双连通的,然后 ...
随机推荐
- iOS -- Effective Objective-C 阅读笔记 (2)
1: 多用类型常量, 少用 #define 预处理指令 #define 预处理指令会把碰到的所有 指定名称 一律换位 定义的内容, 这样的话, 假设此指令在某个头文件中, 那么所有引入这个头文件的代码 ...
- Idea-Java接入银联支付的Demo
注:本文来源于:< Idea-Java接入银联支付的Demo > 接入银联支付的Demo,希望能给大家节约一点时间 https://github.com/wangfei0904306/un ...
- vue之自行实现派发与广播-dispatch与broadcast
要解决的问题 主要针对组件之间的跨级通信 为什么要自己实现dispatch与broadcast? 因为在做独立组件开发或库时,最好是不依赖第三方库 为什么不使用provide与inject? 因为它的 ...
- bat如何实现自动创建文件夹(以当前时间命名)
先比较直接的查看当前的日期和时间:(或者cmd中直接输入date,time查看) @echo off color 0a set dt=%date%%time% echo %dt% pause 1.使用 ...
- matalb 产生信号源 AM调制解调 FM调制解调
%%%%%%%%%%%%%%%%%%%%%%%%%%% %AM调制解调系统 %%%%%%%%%%%%%%%%%%%%%%%%%%% clear; clf; close all Fs=800000;%采 ...
- TabLayout和ViewPager
这里就说下tablayout+viewpager的实现方式:tablayout是android5.0推出来的一个MaterialDesign风格的控件,是专门用来实现tab栏效果的:功能强大,使用方便 ...
- swoole 简介
- cf478d 线性dp好题
/* 给定r个红块,g个绿块,按要求堆放 问当堆放成最大高度时,有多少种可能的堆放方式 排列要求:1.第i行放i块 2.每行同色 首先当然要确定能够放置几行 设红块有r个,绿块有g个,那么放置h行需要 ...
- unzip文件解压
1.记录下,遇到.zip的安装包,指定解压到某个地方 格式:unzip 压缩包名.zip -d 存放路径
- .NET编码解码(HtmlEncode与HtmlDecode)
编码代码: System.Web.HttpUtility.HtmlEncode("<a href=\"http://hovertree.com/\">何问起& ...