BZOJ 5467 Slay the Spire

  • 我的概率基础也太差了.jpg

大概就是这样,因为强化牌至少翻倍,所以打出的牌必定是全部的强化牌或者$k-1$个强化牌,然后剩余的机会打出最大的几个攻击牌。

我们对于强化牌和攻击牌分别做,并且显然,排序并不会影响答案。

$f[i][j]$表示前$i$张牌,取到$j$张,第$i$张必定取的最大强化值之积,$g[i][j]$表示前$i$张攻击牌,取到$j$张,第$i$张必定取的最大伤害和。(一般来说,应该先考虑第$i$张不必需取的最大值,但是由于那样设计状态并不能优化成$n^2$,所以只能选择第$i$张必须选的答案)

$f[i][j]=a_i\times \sum\limits_{k=j-1}^{i-1} f[k][j-1]$

$g[i][j]=C(i-1,j-1)\times b_i+\sum\limits_{k=j-1}^{i-1} g[k][j-1]$

然后剩下的就是如何计算答案了。

那么很显然,我们要求的是前$n$张排中,选择$j$个,第$n$个不必需选择的答案。

因此设$F(i,j)$表示摸到$i$张,选择$j$个的最大强化之积。那么很显然,$F(i,j)=\sum\limits_{k=i}^nf[k][j]\times C(n-k,i-j)$

同时设$G(i,j)$表示摸到$i$张,选择$j$个的最大伤害之和。那么很显然,$G(i,j)=\sum\limits_{k=i}^n g[k][j]\times C(n-k,i-j)$

同样,根据我们最初得到的结论,$ans=\sum\limits_{i=0}^{k-1}F(i,i)\times G(m-i,k-i)+\sum\limits_{i=k}^m F(i,k-1)\times G(m-i,1)$

#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <iostream>
#include <bitset>
using namespace std;
#define N 3005
#define ll long long
#define mod 998244353
int f[N][N],g[N][N],n,k,a[N],b[N],m,sum[N],C[N][N];
void init()
{
for(int i=0;i<=3000;i++)
{
C[i][0]=1;
for(int j=1;j<=i;j++)C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
}
}
int F(int x,int y)
{
if(x<y)return 0;if(!y)return C[n][x];int ret=0;
for(int i=x-y+1;i<=n-y+1;i++)ret=(ret+(ll)f[y][i]*C[i-1][x-y])%mod;
return ret;
}
int G(int x,int y)
{
if(x<y)return 0;int ret=0;
for(int i=x-y+1;i<=n-y+1;i++)ret=(ret+(ll)g[y][i]*C[i-1][x-y])%mod;
return ret;
}
void solve()
{
scanf("%d%d%d",&n,&m,&k);
// memset(f,0,sizeof(f));memset(g,0,sizeof(g));
for(int i=1;i<=n;i++)
for(int j=1;j<=n-i+1;j++)
f[i][j]=g[i][j]=0;
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=1;i<=n;i++)scanf("%d",&b[i]);
sort(a+1,a+n+1);sort(b+1,b+n+1);
for(int i=1;i<=n;i++)f[1][i]=a[i],sum[i]=(sum[i-1]+a[i])%mod;
for(int i=2;i<=n;i++)
{
for(int j=1;j<=n-i+1;j++)f[i][j]=(ll)a[j]*(sum[n]-sum[j]+mod)%mod;
for(int j=1;j<=n-i+1;j++)sum[j]=(sum[j-1]+f[i][j])%mod;
for(int j=n-i+2;j<=n;j++)sum[j]=sum[j-1];
}
for(int i=1;i<=n;i++)g[1][i]=b[i],sum[i]=(sum[i-1]+b[i])%mod;
for(int i=2;i<=n;i++)
{
for(int j=1;j<=n-i+1;j++)g[i][j]=((ll)b[j]*C[n-j][i-1]+sum[n]-sum[j]+mod)%mod;
for(int j=1;j<=n-i+1;j++)sum[j]=(sum[j-1]+g[i][j])%mod;
for(int j=n-i+2;j<=n;j++)sum[j]=sum[j-1];
}
int ans=0;
for(int i=0;i<m;i++)
{
if(i<k)ans=(ans+(ll)F(i,i)*G(m-i,k-i))%mod;
else ans=(ans+(ll)F(i,k-1)*G(m-i,1))%mod;
}
printf("%d\n",ans);
}
int main(){init();int T;scanf("%d",&T);while(T--)solve();return 0;}

BZOJ 5467 Slay the Spire的更多相关文章

  1. LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)

    Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...

  2. loj #2538. 「PKUWC2018」Slay the Spire

    $ \color{#0066ff}{ 题目描述 }$ 九条可怜在玩一个很好玩的策略游戏:Slay the Spire,一开始九条可怜的卡组里有 \(2n\) 张牌,每张牌上都写着一个数字\(w_i\) ...

  3. BZOJ.5467.[PKUWC2018]Slay the Spire(DP)

    LOJ BZOJ 洛谷 哪张能力牌能乘攻击啊,太nb了叭 显然如果有能力牌,那么应该选最大的尽可能的打出\(k-1\)张. 然后下面说的期望都是乘总方案数后的,即所有情况的和.然后\(w_i\)统一用 ...

  4. [PKUWC2018] Slay the spire

    Description 现在有 \(n\) 张强化牌和 \(n\) 张攻击牌: 攻击牌:打出后对对方造成等于牌上的数字的伤害. 强化牌:打出后,假设该强化牌上的数字为 \(x\),则其他剩下的攻击牌的 ...

  5. 题解-PKUWC2018 Slay the Spire

    Problem loj2538 Solution 在考场上当然要学会写暴力,考虑如果手上已经有了\(a\)张攻击牌和\(b\)张强化牌: 首先强化牌会在攻击牌之前用(废话),其次要将两种牌分别从大往小 ...

  6. LOJ2538 PKUWC2018 Slay the Spire DP

    传送门 不想放题面了,咕咕咕咕咕 这个期望明明是用来吓人的,其实要算的就是所有方案的最多伤害的和. 首先可以知道的是,能出强化牌就出强化牌(当然最后要留一张攻击牌出出去),且数字尽量大 所以说在强化牌 ...

  7. LOJ2538. 「PKUWC2018」Slay the Spire【组合数学】

    LINK 思路 首先因为式子后面把方案数乘上了 所以其实只用输出所有方案的攻击力总和 然后很显然可以用强化牌就尽量用 因为每次强化至少把下面的牌翻一倍,肯定是更优的 然后就只有两种情况 强化牌数量少于 ...

  8. PKUWC Slay The Spire

    题面链接 LOJ sol 好神啊.果然\(dp\)还是做少了,纪录一下现在的思维吧\(QAQ\). 我们首先可以发现期望是骗人的,要不然他乘的是什么xjb玩意. 其实就是要求所有方案的最优方案和. 因 ...

  9. loj2538 「PKUWC2018」Slay the Spire 【dp】

    题目链接 loj2538 题解 比较明显的是,由于强化牌倍数大于\(1\),肯定是能用强化牌尽量用强化牌 如果强化牌大于等于\(k\),就留一个位给攻击牌 所以我们将两种牌分别排序,企图计算\(F(i ...

随机推荐

  1. Openlayer3之绚丽的界面框架-Materialize

    一群做C++的老伙计搞前端开发,徒手写html和css应该会折寿..在网上找了半天,Materialize算是用起来很方便的一款前端界面框架.Google的Material Design看起来感觉还是 ...

  2. Ehcache缓存配置以及基本使用

    在java项目广泛的使用.它是一个开源的.设计于提高在数据从RDBMS中取出来的高花费.高延迟采取的一种缓存方案.正因为Ehcache具有健壮性(基于java开发).被认证(具有apache 2.0 ...

  3. java的优点和误解 《java核心技术卷i》第一章

    <java核心技术卷i>第一章主要内容包括三点: 1:Java白皮书的关键术语:描述Java的十一个关键字: 2:Java applet 3 :关于Java的常见误解   1:第一章:Ja ...

  4. (jQuery插件)autocomplete插件的简单例子

    1.引入相应的js和css,我用到的时候是在jquery-ui的js里面整合的,ui的css 2.先在html上写一个input <input id="tags" class ...

  5. C# 如何使用 Elasticsearch (ES)

    Elasticsearch简介 Elasticsearch (ES)是一个基于Apache Lucene(TM)的开源搜索引擎,无论在开源还是专有领域,Lucene可以被认为是迄今为止最先进.性能最好 ...

  6. spring4笔记----依赖注入的两种形式

    设值注入:通过<property.../>元素驱动Spring执行setter的方法 构造注入:通过<constructor-arg.../>元素驱动Spring执行带有参数的 ...

  7. javascript 重要属性之prototype(继承)

    转载猫猫小屋 http://www.maomao365.com/?p=831 在javascript中每一个函数都拥有 prototype属性,在javascript中使用prototype,可以向已 ...

  8. memory 监控 mysql vs percona vs maria

    oracle mysql 5.7 在performance_schema 通过以下表展现内存信息.这些表实际engine为performance_schema.这些表数据实际是以数组的形式存储在内存中 ...

  9. kali系统固化到固态硬盘小记(赠送给广大折腾党的笔记)

    1.首先你需要一个移动硬盘和一个移动硬盘盒子(一根数据转换线,一般买盒子商家会赠送的) SSD硬盘要事先格式化一下格式,不然识别不出来 2.准备好Kali镜像,传送门在这里https://www.ka ...

  10. LeetCode算法题-Implement Queue Using Stacks(Java实现)

    这是悦乐书的第195次更新,第201篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第57题(顺位题号是232).使用栈实现队列的以下操作. push(x) - 将元素x推 ...