mysql列反转Pivoting
Pivoting是一项可以把行旋转为列的技术。在执行Pivoting的过程中可能会使用到聚合。Pivoting技术应用非常广泛。下面讨论的都是静态的Pivoting查询,即用户需要提前知道旋转的属性和列的值。对于动态Pivoting,需要动态地构造字符串。
开放架构
CREATE TABLE t(
id INT,
attribute VARCHAR(10),
value VARCHAR(20),
PRIMARY KEY(id,attribute)
);
INSERT INTO t SELECT 1,'attr1','BMW';
INSERT INTO t SELECT 1,'attr2','100';
INSERT INTO t SELECT 1,'attr3','2010-01-01';
INSERT INTO t SELECT 2,'attr2','200';
INSERT INTO t SELECT 2,'attr3','2010-03-04';
INSERT INTO t SELECT 2,'attr4','M';
INSERT INTO t SELECT 2,'attr5','55.60';
INSERT INTO t SELECT 3,'attr1','SUV';
INSERT INTO t SELECT 3,'attr2','10';
INSERT INTO t SELECT 3,'attr3','2011-11-11';
SELECT id,
MAX(CASE WHEN attribute='attr1' THEN value END) AS attr1,
MAX(CASE WHEN attribute='attr2' THEN value END) AS attr2,
MAX(CASE WHEN attribute='attr3' THEN value END) AS attr3,
MAX(CASE WHEN attribute='attr4' THEN value END) AS attr4,
MAX(CASE WHEN attribute='attr5' THEN value END) AS attr5
FROM t
GROUP BY id;
Pivoting先根据id进行分组,确定行列互转后记录的行数。之后通过已知的5个属性来确定行列互转后有5列数据,并通过CASE得到每列的值。由于使用了分组技术,因此一定要使用分组函数来取得列的值,故这里使用MAX函数,当然也可以使用MIN函数。最后得到的结果如下图
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAYoAAABUCAIAAAATX+esAAAL4klEQVR4nO2du24bORfH+Tx5AGN2HiGvoOqTjAH8CO7cpIjkBaYx3LpfKLF2gSlSunazcqxmgN3NXrzfBxdxEt9iy+BXzI2cC0VZnMND+vxABFqKmjl/zvBvci5n2U/TX6hQoUIFYWE/TX/hBEEQ+LBvT1+/frUbgCmQC0EeHjzedIjHQsiejIFcCPLw4PGmQzwWYt+evnz5YjcAUyAXgjw8eLzpEI+FkD0ZA7kQ5OHB402HeCyE7MkYyIUgDw8ebzrEYyGA9pTGYRinjeqrqyugAHoGuRDk4cHjTYd4LKQ3e2qaUYc9ff78ee0NdmyqIIlU3/aFSSFpHLIcU1KM9nMSFeGxKDESHjw9nHg8icwdMG36OrLgSppCcnt6fFze3T/0W85/DIIfP8qVy+XTv//9n9bexZ+3bSorH/d/YIyxjm/7K4aFzLZHs+zzzyP2w+QcbXiLSWAgPPhi/MS7u384HrFgtK1o4IKQn0ds+9jeEbm9+y6W3J4eHpe1LzYtH/eDYP8s+1DacVYjlOXy6Z+Lf5t7P5uUPwrGH7/f3i3GRUUwmVWfR9tBsD8eMca2j5u7Biy9CLnL2mc/xBnebFivcaMY75CzSRBMFvDnnmkh1g5oJqRW2bc9zYaMDY/FGq3OrcrxNhvN6j+XvS/ffn3XFjrXsBBzWnoILzvdnfQm4x2Se5O542XvyM6GpatlimCF1CoLe3p4vLm9N1nO9oNgf579K9bIzZZPT3/9fdGy9zNpzjWv/bz83LbN9sqeSy9CbmdDFozP0IZnMkLgYrRDzsfVb4QfuifE5pHNhNQqkdpTUHZNaz+6Y08bCDF5fvTSz7f3N7f374dseAza1ag7BPzc6+3Ino8DNPb0/eHx+ubOZJlPtoLJ/OZ4yIK387vrm7v5OGDBZC43Wy6fPv35d3PvW0XL6lfzyRYbvSs3nn3O99K6a6NyVhXDQuaTraLfEIY3H4+K2Krj61bp5cRT1Lsi5P1o+F5uACukVpnb0/33h2/XtybLfLy1Nf71+vbbu3wxuzUc5jVCWS6f/vj0V3PvxY+kX2WVW2/Pqs+Nbf76tprS/uedUUXKYlaIqKJsiSe88pgCdzLa41WV8rR3VMh8vGXpyGZCapW92dNmnetcQS4EeXjUISREaU/3D1+/3cCX5XL5+x9/2tr7yxGCPDzqEBKSCalV5vZ0d//9y9dr+PK4XP72+ydbe385QpCHRx1CQjIhtcrcns4JgiCQUb7UYo2HhweLezcIciHIw4PHmw7xWIj9hCoev2+NCuThwXN1dcUZ96B4JUSG7MkYyIUgDw8er0a17RiMCZEhezIGciHIw4PHq1FtOwZjQmTInoyBXAjy8ODxalTbjsGYEBmyJ2MgF4I8PHhWjeqL2dFg8ObUzNh7fTD4sDt7ZcWenBIiA2pPUcjXSuYb7jFWlGjB+WUc7jE2rdIzJlPGDuP0Mg4Pi8R+l3G4F8aX+ffRHlwyR43xn0RlnDyJcmllhM0aqPCyjt1jbI+FJ6kyGLUEueXqLWzSflPUo/piZ3fw5pS/mu1+GOzuXOT1r2a7R7OL7N+ysaKyNrBrNSD25JgQGSB7SmPOGGfr2pNoOrkNRdFh4T6XcXgYhodxKthQehKGh2G0EH5lWksXantKT0K2x1gRTzJlWZDpSZgZbrMGLrxFlPcYT6K9ML5sD2alBBGdLWzSfnOUo/r0IJsjvJrtHh0cHBXzhU1GNbuYHQ0OXgPbk2tCZCD/Vwg8fLY9LSI2TTK7SU7C7C98MmXRSW5AyTT3rGQaJYsonwKUH0BYPXuq7FKY1uWVzRrw8DjnPI0Pw/iyOxiVBBGdLWzS3gCqUV1OELLB+fogXxxtNKr5xc5uNX+BsSfnhMjgtqdqcRfGl/JIruZTcZpNmk5SztN4GqfFcqD8gwzDM+0p/9ysAQ+Pt3llLRiVBBGdLWzS3gCKUV0Nv2Jwnr4ZHLzedFTz0h2g7Mk9ITK47allcZf7TnU1KmtzGYfZ9GqacJ7Gh1GS/wuH+/aUr+z0zKKlTb4W22PhSaxjN+u2N8tao1oaus8e1a2VsPaEXYiMI/Ykzph4dik3SnhjtBTXUNKTKL7s65JqF44v7kpvag2v4GUs7lpGNeMXO7sHO1gnHd4IkXHEnhZR/Q5dhlCTTMOwvGq+iMLDEPLCE1/PnpBdGpdud7aHpyNBRGcLm7TfnDUu2eT1pwcfBoOj2UV5vbkY7fmtMfzXnvALkYG9c8c4Y7y2btG79lSbKxXUVgrS4wWgF5645p278iEJTA8WiLEVzxa0BKMhQURnC5u03xTtG17C4BRH+4fBICvNmg8Hp7X/ZBzBnTsXhMjQY5nGQC4EeXjwaD0uZHD42X3uyRUhMmRPxkAuBHl48Hj1sLU3QmTInoyBXAjy8ODx6lU12zEYEyJD9mQM5EKQhwePV6PadgzGhMjk9nRFEARhm3Z7ssiVv96PCuThweNNh3gshOyJ7OmF4k2HeCyE7Ins6YXiTYd4LITsiezpheJNh3gsBL89OfzUBiqQhwePNx3isRAQe0p5WLzREsZtMXWPeadz/VVopaP0PltmWcPaXirs3FqeE1VTpzaKDmlPymo6AFMo7Uno8yodRa1GZhHpnQnmsWRPSfWeXcR47Tgr7cntXH8VGuko/c+WWe0lS3q3qn1RH04j4BQOHUlZkbLKnhSpuBosopoN9X1aithf3MXhOvbkeK6/NrrSUVpPqKIOr2DzhCq1b5Xt8yyD4B3SlZQVJwbtqcw629K4/9TYtu2pLaeKwp5cz/XXQmc6Sgzp6ACyZabxYesyoT25Xb6+sGFPrUlZcaK5uGss1lgj45C47iuTUvR7WopYtqfmyo57lrRwBYp0lBjsCSRbprAjZfvMyIRi2iBW2VNbUlaU6M2LxXSDihphrgRyWorYtKdWb+KeJS1UoU5HaX1xB5UtM/u6ngZe2d7O7Kk1KStG1lm2q2tq81zlMr8HbN6561K2xrWnvN6ZXH8VGukovc+WmZ5Egv3pXhqv7dQgq+2p5wBMoXXTo7TaZk35IbsRUS6o96LkJVwaF1NlNp8t0L5z516uv6oHtNJR+p4ts7hj3ZH6sntrZE9KNB8ZEVypWVO7OCg+c+D9gwVKtJ57MugjVp57QgDy8ODxpkM8FoLdnuipcVMgDw8ebzrEYyH47cmZgvwsQR4ePN50iMdCyJ7Inl4o3nSIx0IoWyZBEFhotyeLNGNyFORCkIcHz5VP03bbMRgTIkP2ZAzkQpCHB49Xo9p2DMaEyJA9GQO5EOThwePVqLYdgzEhMmRPxkAuBHl48Hg1qm3HYEyIDNmTMZALQR4ePKtGtVMP3HkjRAbInqLypZao7SzpopbFsfX1VKmyJc8ZGBrjXz/VpHnW6GdVeKKErhrI9s9HPaodS9PqjRAZ6GyZ7enoOpDeoZ8mHW/PC5Zk9d0otT2tlWoSOrxnZctsrRHpu/2GKEe1a2lavREiA724ixivjUWlPcl/ujuSe1R5yxZRI8MWHKtnT7rZSHpBb3Gnny2zu0b9rdn2G6Aa1c6lafVGiAycPcUhZw1v4sphk+UDqyYXXUNlEdVykljhmfbUf5avDC17WiNbZneN+lsX7Mm9NK3eCJGxMHvSX9zlZIk4Ohd3XMivCHQdpxX37WmtbJktNUL2y7SP9mZZa1RjT9PqjRAZaHtKIl4bi3qLDiHxc1knpUYL40UcglzE6cLxxd262TK7a9Tfujl74sjTtHojRAYoHV15fq01ewrryzopy6J0UXkRdSQ5g2Mde0J2afxZ2TI7a9TfumBP7qVp9UaIDNCduzJVZnMZoxg2QjJ84d5ce258oCWSAq07d7qpJkHDe262zJaars320X5DtG94uZCm1RshMvRYpjGQC0EeHjxajwsZHH52n3tyRYgM2ZMxkAtBHh48Xj1s7Y0QGbInYyAXgjw8eLx6Vc12DMaEyJA9GQO5EOThwePVqLYdgzEhMpQtkyAILLTbE0EQBDbIngiCQArZE0EQSCF7IggCKWRPBEEgheyJIAikkD0RBIEUsieCIJBC9kQQBFL+D42mrzc2iozFAAAAAElFTkSuQmCC" alt="" />
关系除法
CREATE TABLE t1 (
orderid VARCHAR(10) NOT NULL,
productid INT NOT NULL,
PRIMARY KEY(orderid,productid)
);
INSERT INTO t1 SELECT 'A',1;
INSERT INTO t1 SELECT 'A',2;
INSERT INTO t1 SELECT 'A',3;
INSERT INTO t1 SELECT 'A',4;
INSERT INTO t1 SELECT 'B',2;
INSERT INTO t1 SELECT 'B',3;
INSERT INTO t1 SELECT 'B',4;
INSERT INTO t1 SELECT 'C',3;
INSERT INTO t1 SELECT 'C',4;
INSERT INTO t1 SELECT 'D',
SELECT orderid
FROM (
SELECT
orderid,
MAX(CASE WHEN productid=2 THEN 1 END) AS p2,
MAX(CASE WHEN productid=3 THEN 1 END) AS P3,
MAX(CASE WHEN productid=4 THEN 1 END) AS p4
FROM t1
GROUP BY orderid
) AS P
WHERE p2=1 AND p3=1 AND p4=1;
上述语句返回“A”和“B”。如果单独运行子查询,将会得到每个订单对应的产品ID,得到的结果如下
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAQ8AAABhCAIAAABHxLP3AAAIiElEQVR4nO2d22/bVBzHz5/Td6TI5AEBYqgIJAQTD0jbw5IqoCEeeOBtmjoQEksyUSRQmVSkCWkCNHpjSsU0NnYRlz1sWZM2bMsuWbe2W1uYe0napimHB9upk9jOzT7H/uX70U+V45z4d7727xs78TkNOzN6FoFAtBLszOhZDgBogd51y9ramuwuuAa0iMkOt1AAWsRk7123rK6uyu6Ca0CLmOxwCwWgRUx2uIUC0CIme5tu+W93+a8vFs8fXs2d6bZf+aFweCgv5lVWqKrqxmZ8AbSIyd6eW/65cWrl2oc769eeXDyk3r3UVb9aqfvGNu655dmzZ25sRgj5oTDTsVTvUy2mbjMWm9LXTsUa15kQo2UqZr0rnbPrbtnZqWxulZ1jefr7pUsHdtTv1JmjK38euX/6ncIfY01fZRuzJxTlxIyYVzVEpbK7+ORpK6p9EZMD0Ult+ecoez4xGxAt5oM1OcC05T0tuYQiR8tElCnRgcZC0rKXNrftQndLeafi0EiLx+c/3v73h62FI1tPTqrTR0pzR+98+5pFy5mkor91DExoD5VkPGp6WH1rUZLZmjVKfKa2/UxSqW9jvKq7qFR25xcWW1EtOmaSijIQMdRGJuoa5OKKEp8JkJbqwZqMaAWwF41rXNVisyezCUVJ5Gr7VpPdYZttuOXJ70Mb9z4vFd7fnPuo9OBg6c7+9KcvNjaLGD3LJhQWndQK3ejrZPVZo7umXaatMbffa1O3pttd6esKY4YfJgZYXT3ZH2OfajF6m00opre5XFxh9dJc12K1J3WrOO5Jh20abinvFEtbdvFs7vr8ucOLvw2s3T5Qyr+xee/d4q39Nz55Lnfhp8bGipLMaMvZpMKi49lkzZq65azppMEYs2xvt4UuorK7++jxgrNqOVEjcDLClHi2+mzdwyBoMV0RNBw1CzluarHYk7Px2mpjSrIxu8M2m7tlJTs+N3awNPdN8e5bpduv3PjqhUxy3+yJV/NXJy3bt+2Wuv0It1i7xdoqwdFiEeMRFpnwTIvT+45131p1y3Z5Z6O4aRmPf3lva+HUWiZUyu1LD79089zp1ZXltX+W7dpHGIuMb24UNzNxhUUmNjKJkJLI6M9ORJhyPGM8qyQyxYlqez3M7fXlxldZp249KpXdh3OPHVRLC7P88aguNpMIGXsgqFqMyMSjhpC9w+qJFss96dg3LbvDNnW3bG2X1zdKlrHw6wfbTz8r3n79+tcvZy/8aNdsLzLxkPHJakx7GIpPV58di2jPhSIRff1ee8ZC8Wlz++py46u6i0plt/DwkYNqaWHeG9oO3ChNH6+5gAgdzwZGS+PBMg4lY+zQmJfHxWpPOvdNy+6wzeZuuXvxy79Pv33z5Ju3ro7LPwAuRcAqLKBa5B6XTvekQwPDLVvltfVi70SlUnlQmPOj6ul4KBRP09Ai97h0uicdGuhu2dzaXl3b6J3YqVTuP3hIQzW0uJvdoYHullkAQDOqI196jnK5LLsLrgEtYrL37oh9jNv1J3TGIFMCFeZP4BY/ggrzJ3CLH0GF+RO4xY+gwvxJ8N2Si7FBxgZZLOdat6QT0AqLhXnjjD9oEZO9JbdMjTLNLWzYnVm+fiBwFZYf4oxxRsItcrV0nL0FtywPhQcZG47FhhkbDA8td9VR/xC4CuOc8zwPk3AL57K1dJS9uVvyV8JskIWv5KsL3XXTL6DCJEPRLfmh6ilFP8kQuRhDhUmGoFuMz/fmoPFZHxUmGXpu0T7fV6++tIsxNmrxb6ACBypMMvTcEhus/WSvXYwNWv3XtKARuArTv8lhnDFedwCgRUx23J2kALSIyQ63UABaxGSHWygALWKywy0UgBYx2XW3qAAAVVVxbrHEeb8EC2gRkx1uoQC0iMkOt1AAWsRkh1soAC1issMtFIAWMdnbHFVJZQAyl31UOgZzJyVmb80to1PcGGFJYwAyD2CFYe6k9Oytu8U00YUEgaswzmWP23UXemOQ66/ESIzV10CFSYasWzSTmJeDDypMMsTdgpnG0oFbpGZvwy34LxbygVukZsc3yIEBcyelZ8fdSQpAi5jscAsFoEVMdriFAtAiJjvcQgFoEZMdcycBqKG5W3oQVVU54zTC+RgHC7la4BZr4BZ/Arf4EbjFn8AtfgRu8Sdwix8R4pZyfqSQOlZ0Z2v9S6nUfL4PbpGWvRW3TMUoDtoX4Jb12HzqWJH3qZdThcuxsr6+T708oq5rf6uNHVbWGaZuTZDdQm7upG4VOpPAqnjvlmJaOxX0qZdHltIjxmmhG7ewcn6kkO4PvFtozp0kNu7YjOduqZ4HtKLvX9IvybpyC1+Pze+dpgLrFs4pjkEmNhffjNdu2Stro+gXjxXS/d26hVddB7cIzw63iHNLjSU6dovVSrhFTHZciQl0C+Prsfl0DOcWzjlFt+BTfudR97lFX19MpwqpEXW9+h2A4SL92zN8bgmyWzi+Qe40zN+JmYre7KJUIaVF45rU0mLdQ8apfSeGuZNBQdz9Fi/OVwF3iwNBvztJE9zL9ydwix/BODF/Arf4EbjFnwTALd3NNgOADs3d0oOoxM4tsvvgpha5VWEP3EIhqGmRWxX2wC0UgpoWuVVhD9xCIahpkVsV9sAtnobA+y2UtMitCnt6+7+Ge1xhQudOUtIiBG9/d1L//ZbBGI2BYt5XmNi5k5S0eIyA353knNYAfs8rTPDcSUpaBOD5b4M1PgwyXleY6LmTlLQIAG5pC/EV5u3cSUpaBCDALbgS66rCPJ07SUmLAPArrW0h+lpfX+/Z3ElKWgSA351sC7HfI3k/d5KSFo/B3Mm2EXePwsVtSr/fIkaL3KqwB27xNHAvvyMtcqvCHriFQlDTIrcq7IFbKAQ1LXKrwh7MnQSghuZuAQA0BW4BoFXgFgBaBW4BoFX+B5ohsC8IpFR5AAAAAElFTkSuQmCC" alt="" />
SELECT orderid
FROM (
SELECT
orderid,
COUNT(CASE WHEN productid=2 THEN 1 END) AS p2,
COUNT(CASE WHEN productid=3 THEN 1 END) AS P3,
COUNT(CASE WHEN productid=4 THEN 1 END) AS p4
FROM t1
GROUP BY orderid
) AS P
WHERE p2=1 AND p3=1 AND p4=1;
格式化聚合函数
CREATE TABLE t2 (
orderid INT NOT NULL,
orderdate DATE NOT NULL,
empid INT NOT NULL,
custid VARCHAR(10) NOT NULL,
qty INT NOT NULL,
PRIMARY KEY (orderid,orderdate)
);
INSERT INTO t2 SELECT 1,'2010-01-02','3','A',10;
INSERT INTO t2 SELECT 2,'2010-04-02','2','B',20;
INSERT INTO t2 SELECT 3,'2010-05-02','1','A',30;
INSERT INTO t2 SELECT 4,'2010-07-02','3','D',40;
INSERT INTO t2 SELECT 5,'2011-01-02','4','A',20;
INSERT INTO t2 SELECT 6,'2011-01-02','3','B',30;
INSERT INTO t2 SELECT 7,'2011-01-02','1','C',40;
INSERT INTO t2 SELECT 8,'2009-01-02','2','A',10;
INSERT INTO t2 SELECT 9,'2009-01-02','3','B',20;
SELECT custid,YEAR(orderdate) AS year,SUM(qty) AS sum_qty
FROM t2 GROUP BY custid,YEAR(orderdate)
SELECT custid,
IFNULL(SUM(CASE WHEN orderyear=2009 THEN qty END),0) AS '2009',
IFNULL(SUM(CASE WHEN orderyear=2010 THEN qty END),0) AS '2010',
IFNULL(SUM(CASE WHEN orderyear=2011 THEN qty END),0) AS '2011'
FROM
(SELECT custid,YEAR(orderdate) AS orderyear,qty FROM t2) AS p
GROUP BY custid;
CREATE TABLE Matrix (
orderyear INT PRIMARY KEY,
y2009 INT NULL,
y2010 INT NULL,
y2011 INT NULL
);
INSERT INTO Matrix SELECT 2009,1,0,0;
INSERT INTO Matrix SELECT 2010,0,1,0;
INSERT INTO Matrix SELECT 2011,0,0,1;
SELECT custid,
SUM(qty*y2009) AS '2009',
SUM(qty*y2010) AS '2010',
SUM(qty*y2011) AS '2011'
FROM
(SELECT custid,YEAR(orderdate) AS orderyear,qty FROM t2) AS O
INNER JOIN Matrix AS P
ON O.orderyear=P.orderyear
GROUP BY custid;
CREATE TABLE p (
custid VARCHAR(10) NOT NULL,
y2009 INT NULL,
y2010 INT NULL,
y2011 INT NULL,
PRIMARY KEY (custid)
);
INSERT INTO p
SELECT
custid,
IFNULL(SUM(CASE WHEN orderyear=2009 THEN qty END), 0) AS '2009',
IFNULL(SUM(CASE WHEN orderyear=2010 THEN qty END), 0) AS '2010',
IFNULL(SUM(CASE WHEN orderyear=2011 THEN qty END), 0) AS '2011'
FROM
(SELECT custid, YEAR(orderdate) AS orderyear, qty
FROM t2 ) AS P
GROUP BY custid;
这里把t2表返回后的内容导入到表p中,如果想得到t2表直接聚合得到的结果,这个问题就变成了Unpivoting问题。解决这个问题需要将列旋转为行。这里使用的技巧是对每行数据产生3个副本,每个副本产生一个需要旋转的列,这个过程可以通过如下的CROSS JOIN来完成。
SELECT * FROM
p,
(SELECT 2009 AS orderyear
UNION ALL SELECT 2010
UNION ALL SELECT 2011) AS o
CASE orderyear
WHEN 2009 THEN y2009
WHEN 2010 THEN y2010
WHEN 2011 THEN y2011
END AS qty
SELECT custid,orderyear,
CASE orderyear
WHEN 2009 THEN y2009
WHEN 2010 THEN y2010
WHEN 2011 THEN y2011
END AS qty
FROM
p,
(SELECT 2009 AS orderyear
UNION ALL SELECT 2010
UNION ALL SELECT 2011) AS o
SELECT custid,orderyear,qty
FROM (
SELECT custid,orderyear,
CASE orderyear
WHEN 2009 THEN y2009
WHEN 2010 THEN y2010
WHEN 2011 THEN y2011
END AS qty
FROM
p,
(SELECT 2009 AS orderyear
UNION ALL SELECT 2010
UNION ALL SELECT 2011) AS o
) AS M
WHERE qty <> 0
mysql列反转Pivoting的更多相关文章
- MySQL服务 - MySQL列类型、SQL模式、数据字典
MySQL列类型的作用: 列类型可以简单理解为用来对用户往列种存储数据时做某种范围"限定",它可以定义数据的有效值(字符.数字等).所能占据的最大存储空间.字符长度(定长或变长). ...
- mysql基础: mysql列类型--字符串
mysql列类型:整型 http://blog.csdn.net/jk110333/article/details/9342283 mysql列类型--时间和日期 http://blog.csd ...
- mysql基础:mysql列类型--时间和日期
mysql列类型--整型 http://blog.csdn.net/jk110333/article/details/9342283 mysql列类型--字符串http://blog.csdn.net ...
- MySQL 列,可选择的数据类型(通过sql命令查看:`help create table;`)
MySQL 列,可选择的数据类型(通过sql命令查看:help create table;) BIT[(length)] | TINYINT[(length)] [UNSIGNED] [ZEROFIL ...
- mysql列类型
mysql三大列类型 整型 tinyint(占据空间:1个字节 存储范围 有符号 -128-127 无符号 0-255) smallint mediumint int big ...
- Mysql 列转行group_concat函数,与行转列
1.正常情况. SELECT JoinEventIds from nt_mainnum 2.使用group_concat函数 select group_concat(JoinEventIds) fro ...
- mysql 列类型以及属性特点
整形列: 一个字节有8个位,例如:int 类型的列存入数字1,00000000 00000000 00000000 00000001它就在最低位置上存入一个1,由此可见是极大的浪费资源,所以在建立列类 ...
- mysql列的处理
MySQL 添加列,修改列,删除列 示例:ALTER TABLE tb_financial MODIFY CREATE_TIME DATETIME(3) DEFAULT NULL COMMENT '录 ...
- mysql列类型char,varchar,text,tinytext,mediumtext,longtext的比较与选择
储存不区分大小写的字符数据 TINYTEXT 最大长度是 255 (2^8 – 1) 个字符. TEXT 最大长度是 65535 (2^16 – 1) 个字符. MEDIUMTEXT 最大长度是 16 ...
随机推荐
- SpringMVC对静态资源的访问(js、css、img)
在网上找了很多的内容,都没法解决,最后通过https://blog.csdn.net/wild46cat/article/details/52456715中内容解决的,在此记录一下. 项目结构: po ...
- DataStructs.h
#ifndef _DATASTRUCS_H__ #define _DATASTRUCS_H__ #include <systemc.h> #include "GlobalPara ...
- Windows 注册表 16进制时间转换( Convert Reg_binary Time to a Datetime )
背景: Windows注册表中,存在大量16进制的时间,以 reg_binary存储在注册表中. 例如: 0D 6C A4 4B 37 C5 CE 01 这种值日常报表中需要转换为适合人阅读的格式,实 ...
- C#如何以管理员身份运行程序 转
在使用winform程序获取调用cmd命令提示符时,如果是win7以上的操作系统,会需要必须以管理员身份运行才会执行成功,否则无效果或提示错误. 比如在通过winform程序执行cmd命令时,某些情况 ...
- alfred3配置
搜索功能配置 github https://github.com/search?utf8=%E2%9C%93&q={query} github'{query}' g baidu http:// ...
- [XAF] Llamachant Framework Modules
Llamachant Framework Modules 最近更新 2018-08-22 *变更:我们从所需的模块列表中删除了审计跟踪模块.如果要在应用程序中使用Audit Trail功能,请将Aud ...
- 6-使用requests库封装类处理get/post请求
1.request安装 1)pip安装,直接pip install requests 2)下载离线包安装,加压后,命令行进入路径,执行python setup.py install 2.创建工程 注意 ...
- sflow介绍与安装过程
介绍: sFlow技术是一种以设备端口为基本单元的数据流随机采样的流量监控技术,不仅可以提供完整的第二层到第四层甚至全网范围内的实时流量信息,而且可以适应超大网络流量(如大于10Gbit/s)环境下的 ...
- JavaScript 中的正则表达式
1.正则表达式概述 ECMAScript 3 开始支持正则表达式,其语法和 Perl 语法很类似,一个完整的正则表达式结构如下: 1 var expression = / pattern / flag ...
- Visual Studio 常见的快捷键
“Ctrl + -” 回到上一个光标位置 “Ctrl + Shift + -” 前进到下一个光标位置 “Ctrl + C” ...