Using Celery with Djang
This document describes the current stable version of Celery (4.0). For development docs, go here.
First steps with Django¶
Using Celery with Django
Note
Previous versions of Celery required a separate library to work with Django, but since 3.1 this is no longer the case. Django is supported out of the box now so this document only contains a basic way to integrate Celery and Django. You’ll use the same API as non-Django users so you’re recommended to read the First Steps with Celery tutorial first and come back to this tutorial. When you have a working example you can continue to the Next Steps guide.
Note
Celery 4.0 supports Django 1.8 and newer versions. Please use Celery 3.1 for versions older than Django 1.8.
To use Celery with your Django project you must first define an instance of the Celery library (called an “app”)
If you have a modern Django project layout like:
- proj/
- proj/__init__.py
- proj/settings.py
- proj/urls.py
- manage.py
then the recommended way is to create a new proj/proj/celery.py module that defines the Celery instance:
| file: | proj/proj/celery.py |
|---|
from __future__ import absolute_import, unicode_literals
import os
from celery import Celery # set the default Django settings module for the 'celery' program.
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings') app = Celery('proj') # Using a string here means the worker don't have to serialize
# the configuration object to child processes.
# - namespace='CELERY' means all celery-related configuration keys
# should have a `CELERY_` prefix.
app.config_from_object('django.conf:settings', namespace='CELERY') # Load task modules from all registered Django app configs.
app.autodiscover_tasks() @app.task(bind=True)
def debug_task(self):
print('Request: {0!r}'.format(self.request))
Then you need to import this app in your proj/proj/__init__.py module. This ensures that the app is loaded when Django starts so that the @shared_taskdecorator (mentioned later) will use it:
proj/proj/__init__.py:
from __future__ import absolute_import, unicode_literals # This will make sure the app is always imported when
# Django starts so that shared_task will use this app.
from .celery import app as celery_app __all__ = ['celery_app']
Note that this example project layout is suitable for larger projects, for simple projects you may use a single contained module that defines both the app and tasks, like in theFirst Steps with Celery tutorial.
Let’s break down what happens in the first module, first we import absolute imports from the future, so that our celery.py module won’t clash with the library:
from __future__ import absolute_import
Then we set the default DJANGO_SETTINGS_MODULE environment variable for thecelery command-line program:
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings')
You don’t need this line, but it saves you from always passing in the settings module to the celery program. It must always come before creating the app instances, as is what we do next:
app = Celery('proj')
This is our instance of the library, you can have many instances but there’s probably no reason for that when using Django.
We also add the Django settings module as a configuration source for Celery. This means that you don’t have to use multiple configuration files, and instead configure Celery directly from the Django settings; but you can also separate them if wanted.
The uppercase name-space means that all Celery configuration options must be specified in uppercase instead of lowercase, and start with CELERY_, so for example the task_always_eager` setting becomes CELERY_TASK_ALWAYS_EAGER, and thebroker_url setting becomes CELERY_BROKER_URL.
You can pass the object directly here, but using a string is better since then the worker doesn’t have to serialize the object.
app.config_from_object('django.conf:settings', namespace='CELERY')
Next, a common practice for reusable apps is to define all tasks in a separatetasks.py module, and Celery does have a way to auto-discover these modules:
app.autodiscover_tasks()
With the line above Celery will automatically discover tasks from all of your installed apps, following the tasks.py convention:
- app1/
- tasks.py
- models.py
- app2/
- tasks.py
- models.py
This way you don’t have to manually add the individual modules to theCELERY_IMPORTS setting.
Finally, the debug_task example is a task that dumps its own request information. This is using the new bind=True task option introduced in Celery 3.1 to easily refer to the current task instance.
Using the @shared_task decorator
The tasks you write will probably live in reusable apps, and reusable apps cannot depend on the project itself, so you also cannot import your app instance directly.
The @shared_task decorator lets you create tasks without having any concrete app instance:
demoapp/tasks.py:
# Create your tasks here
from __future__ import absolute_import, unicode_literals
from celery import shared_task @shared_task
def add(x, y):
return x + y @shared_task
def mul(x, y):
return x * y @shared_task
def xsum(numbers):
return sum(numbers)
See also
You can find the full source code for the Django example project at:https://github.com/celery/celery/tree/master/examples/django/
Relative Imports
You have to be consistent in how you import the task module. For example, if you haveproject.app in INSTALLED_APPS, then you must also import the tasks fromproject.app or else the names of the tasks will end up being different.
Extensions
django-celery-results - Using the Django ORM/Cache as a result backend
The django-celery-results extension provides result backends using either the Django ORM, or the Django Cache framework.
To use this with your project you need to follow these steps:
Install the django-celery-results library:
$ pip install django-celery-results
Add
django_celery_resultstoINSTALLED_APPS.Note that there’s no dashes in this name, only underscores.
Create the Celery database tables by performing a database migrations:
$ python manage.py migrate django_celery_results
Configure Celery to use the django-celery-results backend.
Assuming you are using Django’s
settings.pyto also configure Celery, add the following settings:CELERY_RESULT_BACKEND = 'django-db'
For the cache backend you can use:
CELERY_RESULT_BACKEND = 'django-cache'
django-celery-beat - Database-backed Periodic Tasks with Admin interface.
See Using custom scheduler classes for more information.
Starting the worker process
In a production environment you’ll want to run the worker in the background as a daemon - see Daemonization - but for testing and development it is useful to be able to start a worker instance by using the celery worker manage command, much as you’d use Django’s manage.py runserver:
$ celery -A proj worker -l info
For a complete listing of the command-line options available, use the help command:
$ celery help
Where to go from here
If you want to learn more you should continue to the Next Steps tutorial, and after that you can study the User Guide.
This document describes the current stable version of Celery (4.0). For development docs, go here.
First steps with Django
Using Celery with Django
Note
Previous versions of Celery required a separate library to work with Django, but since 3.1 this is no longer the case. Django is supported out of the box now so this document only contains a basic way to integrate Celery and Django. You’ll use the same API as non-Django users so you’re recommended to read the First Steps with Celery tutorial first and come back to this tutorial. When you have a working example you can continue to the Next Steps guide.
Note
Celery 4.0 supports Django 1.8 and newer versions. Please use Celery 3.1 for versions older than Django 1.8.
To use Celery with your Django project you must first define an instance of the Celery library (called an “app”)
If you have a modern Django project layout like:
- proj/
- proj/__init__.py
- proj/settings.py
- proj/urls.py
- manage.py
then the recommended way is to create a new proj/proj/celery.py module that defines the Celery instance:
| file: | proj/proj/celery.py |
|---|
from __future__ import absolute_import, unicode_literals
import os
from celery import Celery # set the default Django settings module for the 'celery' program.
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings') app = Celery('proj') # Using a string here means the worker don't have to serialize
# the configuration object to child processes.
# - namespace='CELERY' means all celery-related configuration keys
# should have a `CELERY_` prefix.
app.config_from_object('django.conf:settings', namespace='CELERY') # Load task modules from all registered Django app configs.
app.autodiscover_tasks() @app.task(bind=True)
def debug_task(self):
print('Request: {0!r}'.format(self.request))
Then you need to import this app in your proj/proj/__init__.py module. This ensures that the app is loaded when Django starts so that the @shared_taskdecorator (mentioned later) will use it:
proj/proj/__init__.py:
from __future__ import absolute_import, unicode_literals # This will make sure the app is always imported when
# Django starts so that shared_task will use this app.
from .celery import app as celery_app __all__ = ['celery_app']
Note that this example project layout is suitable for larger projects, for simple projects you may use a single contained module that defines both the app and tasks, like in theFirst Steps with Celery tutorial.
Let’s break down what happens in the first module, first we import absolute imports from the future, so that our celery.py module won’t clash with the library:
from __future__ import absolute_import
Then we set the default DJANGO_SETTINGS_MODULE environment variable for thecelery command-line program:
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings')
You don’t need this line, but it saves you from always passing in the settings module to the celery program. It must always come before creating the app instances, as is what we do next:
app = Celery('proj')
This is our instance of the library, you can have many instances but there’s probably no reason for that when using Django.
We also add the Django settings module as a configuration source for Celery. This means that you don’t have to use multiple configuration files, and instead configure Celery directly from the Django settings; but you can also separate them if wanted.
The uppercase name-space means that all Celery configuration options must be specified in uppercase instead of lowercase, and start with CELERY_, so for example the task_always_eager` setting becomes CELERY_TASK_ALWAYS_EAGER, and thebroker_url setting becomes CELERY_BROKER_URL.
You can pass the object directly here, but using a string is better since then the worker doesn’t have to serialize the object.
app.config_from_object('django.conf:settings', namespace='CELERY')
Next, a common practice for reusable apps is to define all tasks in a separatetasks.py module, and Celery does have a way to auto-discover these modules:
app.autodiscover_tasks()
With the line above Celery will automatically discover tasks from all of your installed apps, following the tasks.py convention:
- app1/
- tasks.py
- models.py
- app2/
- tasks.py
- models.py
This way you don’t have to manually add the individual modules to theCELERY_IMPORTS setting.
Finally, the debug_task example is a task that dumps its own request information. This is using the new bind=True task option introduced in Celery 3.1 to easily refer to the current task instance.
Using the @shared_task decorator
The tasks you write will probably live in reusable apps, and reusable apps cannot depend on the project itself, so you also cannot import your app instance directly.
The @shared_task decorator lets you create tasks without having any concrete app instance:
demoapp/tasks.py:
# Create your tasks here
from __future__ import absolute_import, unicode_literals
from celery import shared_task @shared_task
def add(x, y):
return x + y @shared_task
def mul(x, y):
return x * y @shared_task
def xsum(numbers):
return sum(numbers)
See also
You can find the full source code for the Django example project at:https://github.com/celery/celery/tree/master/examples/django/
Relative Imports
You have to be consistent in how you import the task module. For example, if you haveproject.app in INSTALLED_APPS, then you must also import the tasks fromproject.app or else the names of the tasks will end up being different.
Extensions
django-celery-results - Using the Django ORM/Cache as a result backend
The django-celery-results extension provides result backends using either the Django ORM, or the Django Cache framework.
To use this with your project you need to follow these steps:
Install the django-celery-results library:
$ pip install django-celery-results
Add
django_celery_resultstoINSTALLED_APPS.Note that there’s no dashes in this name, only underscores.
Create the Celery database tables by performing a database migrations:
$ python manage.py migrate django_celery_results
Configure Celery to use the django-celery-results backend.
Assuming you are using Django’s
settings.pyto also configure Celery, add the following settings:CELERY_RESULT_BACKEND = 'django-db'
For the cache backend you can use:
CELERY_RESULT_BACKEND = 'django-cache'
django-celery-beat - Database-backed Periodic Tasks with Admin interface.
See Using custom scheduler classes for more information.
Starting the worker process
In a production environment you’ll want to run the worker in the background as a daemon - see Daemonization - but for testing and development it is useful to be able to start a worker instance by using the celery worker manage command, much as you’d use Django’s manage.py runserver:
$ celery -A proj worker -l info
For a complete listing of the command-line options available, use the help command:
$ celery help
Where to go from here¶
If you want to learn more you should continue to the Next Steps tutorial, and after that you can study the User Guide.

Previous topic
Next topic
This Page
Quick search
Using Celery with Djang的更多相关文章
- Django部署以及整合celery
前言 Djngo部署的结构一般都是nginx+uwsgi+python web 一.新建一个Djang项目并合并celery 项目名随便打的..命名规范驼峰啥的别和我扯犊子哈 跑一下,然后我们就有一个 ...
- django -- Celery实现异步任务
1. 环境 python==2.7 djang==1.11.2 # 1.8, 1.9, 1.10应该都没问题 celery-with-redis==3.0 # 需要用到redis作为中间人服务(Bro ...
- django —— Celery实现异步和定时任务
1. 环境 python==2.7 djang==1.11.2 # 1.8, 1.9, 1.10应该都没问题 celery-with-redis==3.0 # 需要用到redis作为中间人服务(Bro ...
- 异步任务队列Celery在Django中的使用
前段时间在Django Web平台开发中,碰到一些请求执行的任务时间较长(几分钟),为了加快用户的响应时间,因此决定采用异步任务的方式在后台执行这些任务.在同事的指引下接触了Celery这个异步任务队 ...
- celery使用的一些小坑和技巧(非从无到有的过程)
纯粹是记录一下自己在刚开始使用的时候遇到的一些坑,以及自己是怎样通过配合redis来解决问题的.文章分为三个部分,一是怎样跑起来,并且怎样监控相关的队列和任务:二是遇到的几个坑:三是给一些自己配合re ...
- tornado+sqlalchemy+celery,数据库连接消耗在哪里
随着公司业务的发展,网站的日活数也逐渐增多,以前只需要考虑将所需要的功能实现就行了,当日活越来越大的时候,就需要考虑对服务器的资源使用消耗情况有一个清楚的认知. 最近老是发现数据库的连接数如果 ...
- celery 框架
转自:http://www.cnblogs.com/forward-wang/p/5970806.html 生产者消费者模式 在实际的软件开发过程中,经常会碰到如下场景:某个模块负责产生数据,这些数据 ...
- celery使用方法
1.celery4.0以上不支持windows,用pip安装celery 2.启动redis-server.exe服务 3.编辑运行celery_blog2.py !/usr/bin/python c ...
- Celery的实践指南
http://www.cnblogs.com/ToDoToTry/p/5453149.html Celery的实践指南 Celery的实践指南 celery原理: celery实际上是实现了一个典 ...
随机推荐
- 巧用git bash
利用git base 实现的仿linux上面的命令,进行一些类linux的操作 .如 vim ls grep .. 例 : 利用grep递归查找当前文件夹中包含php5apache字样的文件
- 基于SVN的项目管理——集中与分散
我们在此处不讨论 GIT 比 SVN 好多少,也不讨论 Maven 和 Gradle 哪个好用,基于现有的开发环境,大多数公司还是采用 SVN + Maven 来进行项目管理——因为这已经满足了大多数 ...
- 前端开发必备!Emmet使用手册
介绍 Emmet (前身为 Zen Coding) 是一个能大幅度提高前端开发效率的一个工具: 基本上,大多数的文本编辑器都会允许你存储和重用一些代码块,我们称之为"片段".虽然片 ...
- 5-udev多路径
udev多路径 查看scsi的唯一标识符 用这个计算机可以识别 重启服务 想要看到下面的,可能重启服务也不行,那就需要重启计算机了 虚拟磁盘 安装这个包multipath 重启服务生效 重启计算机生效 ...
- 最新win7系统64位和32位系统Ghost装机稳定版下载
系统来自转载:系统妈 一.主要更新:========================== * 更新了系统补丁和Office2007 SP2所有补丁 通过微软漏洞扫描* 更新QQ至7.1 官方正式版* ...
- Linq To SQL 的问题点滴
String 类型的字段问题 String类型的字段生成的SQL 没有判断为空的情况时 生成的SQL: 这里判断为空的逻辑很明显不是本来的意思. 左关联 SQL关联中经常会用到左关联,那么Linq ...
- 使用selenium编写脚本常见问题(一)
前提:我用selenium IDE录制脚本,我用java写的脚本,如果大家想看的清楚明白推荐java/Junit4/Webdriver 我用的是java/TestNG/remote control 1 ...
- S5PV210_uart stdio移植
1.stdio : standard input output 标准输入输出 2.printf函数调用到的2个关键函数: vsprintf : 格式化打印信息,最终得到纯字符串的打印信息等待输出 pu ...
- jdbc java数据库连接 11)中大文本类型的处理
1. Jdbc中大文本类型的处理 Oracle中大文本数据类型, Clob 长文本类型 (MySQL中不支持,使用的是text) Blob 二进制类型 MySQL数据库, Text ...
- 东软HIS切换输入法卡死的解决方法
在文字选项的第二页上,勾选上边的相容性设定,然后重启电脑: