因为是从1~n插入的, 慢插入的对之前的没有影响, 所以我们可以用平衡树维护, 弄出最后的序列然后跑LIS就OK了 O(nlogn)

--------------------------------------------------------------------

#include<bits/stdc++.h>
 
#define rep(i, n) for(int i = 0; i < n; ++i)
#define clr(x, c) memset(x, c, sizeof(x))
#define foreach(i, x) for(__typeof(x.begin()) i = x.begin(); i != x.end(); i++)
 
using namespace std;
 
const int maxn = 100009;
 
struct Node {
Node *ch[2], *p;
int s, v;
inline void upd() {
s = ch[0]->s + ch[1]->s + 1;
}
inline void setc(Node* t, int d) {
ch[d] = t;
t->p =this;
}
inline bool d() {
return this == p->ch[1];
}
} pool[maxn], *pt = pool, *root, *null;
 
Node* newNode(int _ = 0) {
pt->v = _; pt->s = 1;
pt->ch[0] = pt->ch[1] = pt->p = null;
return pt++;
}
 
void rot(Node* t) {
Node* p = t->p;
int d = t->d();
p->p->setc(t, p->d());
p->setc(t->ch[d ^ 1], d);
t->setc(p, d ^ 1);
p->upd();
if(p == root) root = t;
}
  
void splay(Node* t, Node* f = null) {
while(t->p != f) {
if(t->p->p != f)
   t->d() != t->p->d() ? rot(t) : rot(t->p);
rot(t);
}
t->upd();
}
 
Node* select(int k) {
for(Node* t = root; ;) {
int s = t->ch[0]->s;
if(k == s) return t;
if(k > s)
   k -= s + 1, t = t->ch[1];
else
   t = t->ch[0];
}
}
 
void init() {
null = newNode();
null->ch[0] = null->ch[1] = null->p = null;
null->s = 0;
root = newNode(maxn);
root->setc(newNode(-maxn), 0);
root->upd();
}
 
int seq[maxn], N = 0, g[maxn], dp[maxn];
 
void dfs(Node* t) {
if(t == null) return;
dfs(t->ch[0]);
if(t->v != maxn && t->v != -maxn) seq[N++] = t->v;
dfs(t->ch[1]);
}
 
int main() {
freopen("test.in", "r", stdin);
init();
int n;
cin >> n;
rep(i, n) {
int v;
scanf("%d", &v);
Node *L = select(v), *R = select(v + 1);
splay(L); splay(R, L);
R->setc(newNode(i), 0);
R->upd(); L->upd();
   g[i] = maxn;
}
dfs(root);
rep(i, n) {
int p = lower_bound(g, g + n, seq[i]) - g;
dp[seq[i]] = p + 1;
g[p] = seq[i];
}
int ans = 0;
rep(i, n) {
   ans = max(ans, dp[i]);
printf("%d\n", ans);
}
return 0;
}

--------------------------------------------------------------------

3173: [Tjoi2013]最长上升子序列

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 806  Solved: 432
[Submit][Status][Discuss]

Description

给定一个序列,初始为空。现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置。每插入一个数字,我们都想知道此时最长上升子序列长度是多少?

Input

第一行一个整数N,表示我们要将1到N插入序列中,接下是N个数字,第k个数字Xk,表示我们将k插入到位置Xk(0<=Xk<=k-1,1<=k<=N)

Output

N行,第i行表示i插入Xi位置后序列的最长上升子序列的长度是多少。

Sample Input

3
0 0 2

Sample Output

1
1
2

HINT

100%的数据 n<=100000

Source

BZOJ 3173: [Tjoi2013]最长上升子序列( BST + LIS )的更多相关文章

  1. BZOJ 3173: [Tjoi2013]最长上升子序列

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1524  Solved: 797[Submit][St ...

  2. Bzoj 3173: [Tjoi2013]最长上升子序列 平衡树,Treap,二分,树的序遍历

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1183  Solved: 610[Submit][St ...

  3. BZOJ 3173: [Tjoi2013]最长上升子序列 [splay DP]

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1613  Solved: 839[Submit][St ...

  4. bzoj 3173 [Tjoi2013]最长上升子序列 (treap模拟+lis)

    [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2213  Solved: 1119[Submit][Status] ...

  5. BZOJ 3173 [Tjoi2013] 最长上升子序列 解题报告

    这个题感觉比较简单,但却比较容易想残.. 我不会用树状数组求这个原排列,于是我只好用线段树...毕竟 Gromah 果弱马. 我们可以直接依次求出原排列的元素,每次找到最小并且最靠右的那个元素,假设这 ...

  6. BZOJ 3173: [Tjoi2013]最长上升子序列 (线段树+BIT)

    先用线段树预处理出每个数最终的位置.然后用BIT维护最长上升子序列就行了. 用线段树O(nlogn)O(nlogn)O(nlogn)预处理就直接倒着做,每次删去对应位置的数.具体看代码 CODE #i ...

  7. bzoj 3173: [Tjoi2013]最长上升子序列【dp+线段树】

    我也不知道为什么把题看成以插入点为结尾的最长生生子序列--还WA了好几次 先把这个序列最后的样子求出来,具体就是倒着做,用线段树维护点数,最开始所有点都是1,然后线段树上二分找到当前数的位置,把这个点 ...

  8. BZOJ 3173: [Tjoi2013]最长上升子序列 Splay

    一眼切~ 重点是按照 $1$~$n$ 的顺序插入每一个数,这样的话就简单了. #include <cstdio> #include <algorithm> #define N ...

  9. bzoj3173[Tjoi2013]最长上升子序列 平衡树+lis

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2253  Solved: 1136[Submit][S ...

随机推荐

  1. jsp中的jquery失效以及引入js失败的问题

    这段时间在试着看公司用的框架是怎么写的,看到项目中对jquery进一步封装的这一部分,所以自己试着写一些demo来模仿框架中的用法. 再一次的,又遇到了一个问题,jsp中引入js的问题,好久没有自己从 ...

  2. Android 开发笔记 “调用WebService”

    WebService是一种基于SOAP协议的远程调用标准,通过webservice可以将不同操作系统平台.不同语言.不同技术整合到一块.在Android SDK中并没有提供调用WebService的库 ...

  3. 转载纯真ip库

    http://blog.csdn.net/clin003/archive/2007/08/14/1743157.aspx 利用 QQWry.Dat 实现 IP 地址高效检索(PHP) 根据 LumaQ ...

  4. 基于visual Studio2013解决C语言竞赛题之0401阶乘

      题目 解决代码及点评 这个是一道经典的教科书题目,基本上每本基础的c/c++语言教科书都会有这个题目 用来演示循环语句 #include <stdio.h> #include ...

  5. Uva 225 Golygons

    这道题如果直接用Dfs,运气好的话是可以直接过的. 但如果要在Dfs的基础上加快速度,剪枝是必不可少的. 我的剪枝策略: 1.当前点(x,y)回到出发点至少需要 |x| +| y| 步,如果剩余的步数 ...

  6. poj 1159 Palindrome(区间dp)

    题目链接:http://poj.org/problem?id=1159 思路分析:对该问题的最优子结构与最长回文子序列相同.根据最长回文子序列的状态方程稍加改变就可以得到该问题动态方程. 假设字符串为 ...

  7. Apple Watch程序开发30分钟秒懂

    苹果公司Apple Watch智能手表正在备受追捧,迅速掌握Apple Watch的APP架构,环境搭建,及实例开发将会让开发者占尽先机.我赢职场全国首发,30分钟玩转Apple Watch应用开发实 ...

  8. CMarkup类在VC中的使用

    首先到http://www.firstobject.com/dn_markup.htm上面下载CMarkup类,将CMarkup.cpp和CMarkup.h导入到我们的工程中就可以了.编译可能会出现问 ...

  9. BZOJ 1978: [BeiJing2010]取数游戏 game( dp )

    dp(x)表示前x个的最大值,  Max(x)表示含有因数x的dp最大值. 然后对第x个数a[x], 分解质因数然后dp(x) = max{Max(t)} + 1, t是x的因数且t>=L -- ...

  10. linux ubuntu安装jdk

    Oracle对Jdk7与Jre7的关系的经典图解 Oracle has two products that implement Java Platform Standard Edition(Java ...