Description

Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared the winner.

Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.

Input

The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all ij, and pii = 0.0 for all i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead of float.

Output

The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01.

Sample Input

2
0.0 0.1 0.2 0.3
0.9 0.0 0.4 0.5
0.8 0.6 0.0 0.6
0.7 0.5 0.4 0.0
-1

Sample Output

2

Hint

In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:

P(2 wins)  = P(2 beats 1)P(3 beats 4)P(2 beats 3) + P(2 beats 1)P(4 beats 3)P(2 beats 4)
= p21p34p23 + p21p43p24
= 0.9 · 0.6 · 0.4 + 0.9 · 0.4 · 0.5 = 0.396.

The next most likely team to win is team 3, with a 0.372 probability of winning the tournament.

题意:有2^n支队伍进行比赛,每行给出这支队伍打败各支队伍的几率,求出那支队伍获胜几率最大

思路:

概率DP,递推式:dp[i][j]=sigma(dp[i-1][j]*p[j][k]*dp[i-1][k]),然后判断两支队伍是否相邻

dp[i][j]代表第i轮中,第j支队伍存活的几率

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; double a[150][150],dp[150][150]; int main()
{
int n,m,i,j,k,ans;
while(~scanf("%d",&n),n+1)
{
m = 1<<n;
for(i = 0; i<m; i++)
for(j = 0; j<m; j++)
scanf("%lf",&a[i][j]);
memset(dp,0,sizeof(dp));
for(i = 0; i<m; i++)//一开始所有队伍都存活
dp[0][i] = 1;
for(i = 1; i<=n; i++)
for(j = 0; j<m; j++)
for(k = 0; k<m; k++)
{
int p = k>>(i-1),q = j>>(i-1);//判断是否相邻
if(p%2)
{
p--;
if(p==q)//判断p前进或后退以为,p==q的话证明他们是相邻的,进行比赛
dp[i][j] += dp[i-1][j]*dp[i-1][k]*a[j][k];//j存活,k存活,j打败k
}
else
{
p++;
if(p==q)
dp[i][j] += dp[i-1][j]*dp[i-1][k]*a[j][k];
}
}
ans = 0;
for(i = 0; i<m; i++)//找最大
{
if(dp[n][ans]<dp[n][i])
ans = i;
}
printf("%d\n",ans+1);
} return 0;
}

POJ3071:Football(概率DP)的更多相关文章

  1. [poj3071]football概率dp

    题意:n支队伍两两进行比赛,求最有可能获得冠军的队伍. 解题关键:概率dp,转移方程:$dp[i][j] +  = dp[i][j]*dp[i][k]*p[j][k]$表示第$i$回合$j$获胜的概率 ...

  2. POJ3071 Football 概率DP 简单

    http://poj.org/problem?id=3071 题意:有2^n个队伍,给出每两个队伍之间的胜率,进行每轮淘汰数为队伍数/2的淘汰赛(每次比赛都是相邻两个队伍进行),问哪只队伍成为冠军概率 ...

  3. Football 概率DP poj3071

                                                                                                 Footbal ...

  4. poj 3071 Football (概率DP水题)

    G - Football Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

  5. poj3071之概率DP

    Football Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2667   Accepted: 1361 Descript ...

  6. POJ 3071 Football(概率DP)

    题目链接 不1Y都对不住看过那么多年的球.dp[i][j]表示i队进入第j轮的概率,此题用0-1<<n表示非常方便. #include <cstdio> #include &l ...

  7. poj3071 Football(概率dp)

    poj3071 Football 题意:有2^n支球队比赛,每次和相邻的球队踢,两两淘汰,给定任意两支球队相互踢赢的概率,求最后哪只球队最可能夺冠. 我们可以十分显然(大雾)地列出转移方程(设$f[ ...

  8. poj 3071 Football(概率dp)

    id=3071">http://poj.org/problem? id=3071 大致题意:有2^n个足球队分成n组打比赛.给出一个矩阵a[][],a[i][j]表示i队赢得j队的概率 ...

  9. POJ 3071 Football (概率DP)

    概率dp的典型题.用dp[j][i]表示第j个队第i场赢的概率.那么这场要赢就必须前一场赢了而且这一场战胜了可能的对手.这些都好想,关键是怎么找出当前要算的队伍的所有可能的竞争对手?这个用异或来算,从 ...

随机推荐

  1. Apache、Tomcat、JBoss、WebLogic的区别与关系

    Weblogic: 是一个企业级的应用服务器,其中包括j2ee中的各类应用如jsp,servlet,ejb等 Tomcat:   是一个初级的应用服务器,支持sp和servlet,不支持EJB,如需E ...

  2. java实现各种数据统计图(柱形图,饼图,折线图)

    近期在做数据挖掘的课程设计,须要将数据分析的结果非常直观的展现给用户,这就要用到数据统计图,要实现这个功能就须要几个第三方包了: 1.       jfreechart-1.0.13.jar 2.   ...

  3. uva 1291(dp)

    题意:有一台跳舞机,中间是0.上左下右分别代表1 2 3 4,初始状态人站在中间.两仅仅脚都踏在0上,然后给出一段序列以0为结束,要按顺序踩出来,从0踏到四个方向须要消耗2点能量,从一个方向到相邻的方 ...

  4. 常用LINUX脚本汇总(1)

    1.查看磁盘使用空间 df -hl 2.查看文件或者文件夹大小 du -sh 文件(夹)名  查看文件大小  AIX系统为du -sg 3.查看当前用户下定时任务列表crontab -l 4.修改定时 ...

  5. After a rest, go on

    busy during the whole May holiday. running between S and H, waste much time leaving things behind. t ...

  6. PHP根据经纬度,计算2点之间的距离的2种方法

    计算地球表面2点之间的球面距离 /** * @param $lat1 * @param $lng1 * @param $lat2 * @param $lng2 * @return int */ fun ...

  7. php 写队列

    这里不得不提到php的数组函数真的是太强大了 队列是先进先出 那么对于数组来说就尾部插入,头部拿出 这里提供方法 尾部插入 我们知道有一个函数array_push 头部拿出 array_shift($ ...

  8. PAT 大数运算

    PAT中关于大数的有B1017,A1023,A1024 (A-Advance,B-Basic) B1017 1017. A除以B (20) 本题要求计算A/B,其中A是不超过1000位的正整数,B是1 ...

  9. 常见的SQL字符串函数

    1.LEN:计算字符串的长度(字符的个数) select len('哈哈hello') 返回长度为7 2.datalength();计算字符串所占用的字节数,不属于字符串函数 select DATAL ...

  10. Spring boot 提高篇

    Spring boot 提高篇 上篇文章介绍了Spring boot初级教程:构建微服务:Spring boot 入门篇,方便大家快速入门.了解实践Spring boot特性:本篇文章接着上篇内容继续 ...