题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1143

首先用传递闭包,知道一个点是否可以到达另一个点,即mp[i][j]==1表示i可以到j;mp[i][j]==0表示i不可以到j。
然后变成求有向无环图的最大独立集。
这是个经典问题,要变成二分图。
将每个点拆成两个点x和y
如果有边i->j,那么连边ix->jy。
然后求二分图的最大匹配,N-最大匹配就是答案。
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<fstream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<utility>
#include<set>
#include<bitset>
#include<vector>
#include<functional>
#include<deque>
#include<cctype>
#include<climits>
#include<complex>
//#include<bits/stdc++.h>适用于CF,UOJ,但不适用于poj using namespace std; typedef long long LL;
typedef double DB;
typedef pair<int,int> PII;
typedef complex<DB> CP; #define mmst(a,v) memset(a,v,sizeof(a))
#define mmcy(a,b) memcpy(a,b,sizeof(a))
#define re(i,a,b) for(i=a;i<=b;i++)
#define red(i,a,b) for(i=a;i>=b;i--)
#define fi first
#define se second
#define m_p(a,b) make_pair(a,b)
#define SF scanf
#define PF printf
#define two(k) (1<<(k)) template<class T>inline T sqr(T x){return x*x;}
template<class T>inline void upmin(T &t,T tmp){if(t>tmp)t=tmp;}
template<class T>inline void upmax(T &t,T tmp){if(t<tmp)t=tmp;} const DB EPS=1e-;
inline int sgn(DB x){if(abs(x)<EPS)return ;return(x>)?:-;}
const DB Pi=acos(-1.0); inline int gint()
{
int res=;bool neg=;char z;
for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
if(z==EOF)return ;
if(z=='-'){neg=;z=getchar();}
for(;z!=EOF && isdigit(z);res=res*+z-'',z=getchar());
return (neg)?-res:res;
}
inline LL gll()
{
LL res=;bool neg=;char z;
for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
if(z==EOF)return ;
if(z=='-'){neg=;z=getchar();}
for(;z!=EOF && isdigit(z);res=res*+z-'',z=getchar());
return (neg)?-res:res;
} const int maxN=; int N,M;
int mp[maxN+][maxN+]; int first[maxN+],now;
struct Tedge{int v,next;}edge[maxN*maxN+];
int ans; inline void addedge(int u,int v)
{
now++;
edge[now].v=v;
edge[now].next=first[u];
first[u]=now;
} int vis[maxN+];
int form[maxN+]; inline int DFS(int u)
{
int i,v;
vis[u]=;
for(i=first[u],v=edge[i].v;i!=-;i=edge[i].next,v=edge[i].v)
if(!form[v] || (!vis[form[v]] && DFS(form[v])))
{
form[v]=u;
return ;
}
return ;
} int main()
{
freopen("bzoj1143.in","r",stdin);
freopen("bzoj1143.out","w",stdout);
int i,j,k;
N=gint();M=gint();
re(i,,M){int u=gint(),v=gint();mp[u][v]=;}
re(k,,N)re(i,,N)re(j,,N)if(i!=k && j!=k && i!=j && mp[i][k] && mp[k][j]) mp[i][j]=;
mmst(first,-);now=-;
re(i,,N)re(j,,N)if(mp[i][j])addedge(i,j);
ans=;
re(i,,N)
{
re(j,,N)vis[j]=;
ans+=DFS(i);
}
printf("%d\n",N-ans);
return ;
}

bzoj1143的更多相关文章

  1. BZOJ1143 [CTSC2008]祭祀river 二分图匹配 最小链覆盖

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1143 题意概括 给出一个有向图.求最小链覆盖. 题解 首先说两个概念: 链:一条链是一些点的集合, ...

  2. 【BZOJ1143】祭祀(网络流)

    [BZOJ1143]祭祀(网络流) 题面 BZOJ 洛谷 Description 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都 会在水面上举办盛大 ...

  3. [BZOJ1143][CTSC2008]祭祀river(Dilworth定理+二分图匹配)

    题意:给你一张n个点的DAG,最大化选择的点数,是点之间两两不可达. 要从Dilworth定理说起. Dilworth定理是定义在偏序集上的,也可以从图论的角度解释.偏序集中两个元素能比较大小,则在图 ...

  4. [BZOJ1143][CTSC2008]祭祀river(最长反链)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1143 分析: 最长反链==最小路径覆盖==n-二分图最大匹配数 某神犇对二分图的总结: ...

  5. BZOJ-1143&&BZOJ-2718 祭祀river&&毕业旅行 最长反链(Floyed传递闭包+二分图匹配)

    蛋蛋安利的双倍经验题 1143: [CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MB Submit: 1901 Solved: 951 ...

  6. BZOJ1143 [CTSC2008] 祭祀river

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=1143 题目大意: 给你n个点,点与点之间由有向边相连.如果u能到达v的话,那么他们就不能同 ...

  7. bzoj1143 2718

    最小可相交路径覆盖 先预处理可到达的点然后转化为最小不相交路径覆盖 type node=record        point,next:longint;      end; ..] of node; ...

  8. bzoj1143 祭祀river(最大独立集)

    [CTSC2008]祭祀river Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2175  Solved: 1098[Submit][Status] ...

  9. [bzoj1143][CTSC2008]祭祀

    题意:给定一个n个点m条边的有向无环图,你要选出最多的点,并且满足任意两点之间都不存在通路.2)输出每个点选了它之后还是否有最优解.   n<=100 m<=1000 题解:每个点拆两个点 ...

随机推荐

  1. fuel部署openStack

    https://code.launchpad.net/fuel [fuel项目] http://www.imgburn.com/ [各种镜像制作工具]

  2. 【转】MVC5中的区域(Areas)

    MVC本身提倡的就是关注点分离.但是当项目本身的业务逻辑足够复杂,如果所有的业务逻辑都写个Controller文件夹下面的时候,你会看到非常庞大的各种命名的Controller,这个时候区域的作用就非 ...

  3. html(四)

    今天html的内容就讲完了,感觉时间过得好快啊,知识点比较多,需要慢慢消化啊... <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Trans ...

  4. 【Python基础】计算项目代码行数

    统计代码行数 # coding: utf-8 import os import sys import time def get_line_count(file_path): ""& ...

  5. JAVA把字符串当作表达式执行

    直接能够穿一个字符串执行 private static void test(String pm1) { ScriptEngineManager manager = new ScriptEngineMa ...

  6. Win10开发必备工具:Visual Studio 2015正式版下载

    7月21日凌晨最新消息,面向大众用户的Visual Studio 2015集成开发工具正式版免费试用版已经推出.本文帮大家汇总一下简体中文社区版.专业版以及企业版在线安装版以及ISO离线安装镜像下载地 ...

  7. [MVC4-基礎] 從資料庫取值顯示在DropDownList中

    剛開始學MVC4,以下是一些基礎的學習筆記! 完成效果像下面這樣,資料來源是既有的Database. 1.Controller public ActionResult Index() { SqlCon ...

  8. \r \r\n \t 的区别

    http://www.360doc.com/content/12/0530/15/16538_214756101.shtml \n 软回车:       在Windows 中表示换行且回到下一行的最开 ...

  9. The type or namespace name 'Script' does not exist in the namespace 'System.Web' (are you missing an assembly reference?)

    应该说是 .net4 的bug,没有所谓的 System.Web.Extensions.dll 库文件,需要将项目的 Target Framework修改为 3.5版本,才能加载System.Web. ...

  10. atoi()、inet_addr()等函数 time.h文件

    1.atoi() 原型:int atoi(const char *nptr); 函数说明:参数nptr字符串,如果第一个非空格字符存在,是数字或者正负号则开始做类型转换,之后检测到非数字(包括结束符 ...