Description

When Xellos was doing a practice course in university, he once had to measure the intensity of an effect that slowly approached equilibrium. A good way to determine the equilibrium intensity would be choosing a sufficiently large number of consecutive data points that seems as constant as possible and taking their average. Of course, with the usual sizes of data, it's nothing challenging — but why not make a similar programming contest problem while we're at it?

You're given a sequence of n data points a1, ..., an. There aren't any big jumps between consecutive data points — for each 1 ≤ i < n, it's guaranteed that |ai + 1 - ai| ≤ 1.

A range [l, r] of data points is said to be almost constant if the difference between the largest and the smallest value in that range is at most 1. Formally, let M be the maximum and m the minimum value of ai for l ≤ i ≤ r; the range [l, r] is almost constant if M - m ≤ 1.

Find the length of the longest almost constant range.

Input

The first line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of data points.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 100 000).

Output

Print a single number — the maximum length of an almost constant range of the given sequence.

Sample Input

Input
5
1 2 3 3 2
Output
4
Input
11
5 4 5 5 6 7 8 8 8 7 6
Output
5

Hint

In the first sample, the longest almost constant range is [2, 5]; its length (the number of data points in it) is 4.

In the second sample, there are three almost constant ranges of length 4: [1, 4], [6, 9] and [7, 10]; the only almost constant range of the maximum length 5 is [6, 10].


思路:

一开始各种想LIS,但是CF再次证明了前两道题目全是想法题(虽然想法并不比算法简单= =~)

首先是要在一整个数段中找到其中的一个子数段,在它的M-m<=1的情况下使其len最大

那么这里就涉及到两个思维的关键点:

(1)不同状态之间的转换:为每个状态设置一个M和m,对于每一个后进入的点判断是否可以继续维持前一状态,如果可以就count++

(2)要意识到新状态的开始点并不一定是旧状态的结束点:可能有一点使得原来的状态不能够持续下去而结束了,但是并不意味着这一点就是新状态的开始点,在维持旧状态的过程中可能就出现了新状态的开始点,这点主要到了以后只要根据不同的情况去找那个开始点就OK了


#include <iostream>
using namespace std; int m,M,n;
int num[]; bool ok(int t)
{
if(m==M) {
if(t==m)
return true;
else if(t == m-||t == m+)
return true;
else
return false;
}
else {
if(t==M||t==m)
return true;
else
return false;
}
} int main()
{
while(cin>>n)
{
cin>>num[];
m = num[];
M = num[];
int count = ;
int ans = ;
for(int i = ;i <= n;i++)
{
cin>>num[i];
if(ok(num[i]))
{
if(m==M && num[i] == m-)
m = num[i];
else if(m==M && num[i] == m+)
M = num[i];
count++;
}
else {
if(m == M) {
M = m = num[i];
count = ;
}
else {
int pos;
if(num[i] == num[i-]+) {
M = num[i];
m = num[i-];
for(int j = i-;j >= ;j--)
{
if(num[j] != num[i-])
break;
pos = j;
}
count = i-pos+;//此时的count应该=当前的坐标-s段开始的坐标
}
else if(num[i] == num[i-]-) {
M = num[i-];
m = num[i];
for(int j = i-;j >= ;j--)
{
if(num[j] != num[i-])
break;
pos = j;
}
count = i-pos+;//同上
}
else {
M = m = num[i];
count = ;
}
}
}
ans = max(ans,count);
}
cout<<ans<<endl;
}
return ;
}

CF-Approximating a Constant Range的更多相关文章

  1. FZU 2016 summer train I. Approximating a Constant Range 单调队列

    题目链接: 题目 I. Approximating a Constant Range time limit per test:2 seconds memory limit per test:256 m ...

  2. Codeforces 602B Approximating a Constant Range(想法题)

    B. Approximating a Constant Range When Xellos was doing a practice course in university, he once had ...

  3. Codeforces Round #333 (Div. 2) B. Approximating a Constant Range st 二分

    B. Approximating a Constant Range Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com ...

  4. cf602B Approximating a Constant Range

    B. Approximating a Constant Range time limit per test 2 seconds memory limit per test 256 megabytes ...

  5. Codeforces Round #333 (Div. 2) B. Approximating a Constant Range

    B. Approximating a Constant Range Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com ...

  6. codeforce -602B Approximating a Constant Range(暴力)

    B. Approximating a Constant Range time limit per test 2 seconds memory limit per test 256 megabytes ...

  7. 【32.22%】【codeforces 602B】Approximating a Constant Range

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  8. CF 602B Approximating a Constant Range

    (●'◡'●) #include<iostream> #include<cstdio> #include<cmath> #include<algorithm& ...

  9. 【CodeForces 602C】H - Approximating a Constant Range(dijk)

    Description through n) and m bidirectional railways. There is also an absurdly simple road network — ...

  10. #333 Div2 Problem B Approximating a Constant Range(尺取法)

    题目:http://codeforces.com/contest/602/problem/B 题意 :给出一个含有 n 个数的区间,要求找出一个最大的连续子区间使得这个子区间的最大值和最小值的差值不超 ...

随机推荐

  1. HDFS集群balance(3)-- 架构细节

    转载请注明博客地址:http://blog.csdn.net/suileisl HDFS集群balance,对应版本balance design 6 如需word版本,请QQ522173163联系索要 ...

  2. [RxJS] Returning subscriptions from the subscribe function

    So far, when writing these subscribe functions, we haven't returned anything. It is possible return ...

  3. apk文件伪装zip64格式案例

    软件样本:http://files.cnblogs.com/files/mmmmar/FMRMemoryCleaner.apk 在论坛看在网友求助把一个小的app去广告,下载一看是清理内存的,刚开始让 ...

  4. 常用PC服务器LSI阵列卡配置

    通常,我们使用的DELL/HP/IBM三家的机架式PC级服务器阵列卡是从LSI的卡OEM出来的,DELL和IBM两家的阵列卡原生程度较高,没有做太多封装,可以用原厂提供的阵列卡管理工具进行监控:而HP ...

  5. 2015 UESTC Winter Training #8【The 2011 Rocky Mountain Regional Contest】

    2015 UESTC Winter Training #8 The 2011 Rocky Mountain Regional Contest Regionals 2011 >> North ...

  6. HDU 5144 NPY and shot(三分法)

    当时做这道题时一直想退出物理公式来,但是后来推到导数那一部分,由于数学不好,没有推出来那个关于Θ的最值,后来直接暴力了,很明显超时了,忘了三分法的应用,这道题又是典型的三分求最值,是个单峰曲线,下面是 ...

  7. HTML5中class选择器属性的解释

    设置有class属性值的元素,可以被css中的选择器调用,也可以在javascript中以getElementsByClassName()方法调用. 可以给各个元素添加class而且名称可以相同与id ...

  8. js动态新增组合Input标签

    var x = 1; function addlink() { var linkdiv = document.getElementById("add1_0"); if (linkd ...

  9. 升级openssl到1.0.1g

    先进行支撑包的安装: # yum install -y zlib   openssl升级步骤: 下载最新版本的openssl源码包 # wget ftp://ftp.openssl.org/sourc ...

  10. 解压版mysql安装--windows系统

    1 解压到某个目录 2 配置配置文件 3 执行命令:安装目录/bin/mysqld --install mysql5.6 --defaults-file=指定配置文件位置 "安装目录/bin ...