Description

When Xellos was doing a practice course in university, he once had to measure the intensity of an effect that slowly approached equilibrium. A good way to determine the equilibrium intensity would be choosing a sufficiently large number of consecutive data points that seems as constant as possible and taking their average. Of course, with the usual sizes of data, it's nothing challenging — but why not make a similar programming contest problem while we're at it?

You're given a sequence of n data points a1, ..., an. There aren't any big jumps between consecutive data points — for each 1 ≤ i < n, it's guaranteed that |ai + 1 - ai| ≤ 1.

A range [l, r] of data points is said to be almost constant if the difference between the largest and the smallest value in that range is at most 1. Formally, let M be the maximum and m the minimum value of ai for l ≤ i ≤ r; the range [l, r] is almost constant if M - m ≤ 1.

Find the length of the longest almost constant range.

Input

The first line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of data points.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 100 000).

Output

Print a single number — the maximum length of an almost constant range of the given sequence.

Sample Input

Input
5
1 2 3 3 2
Output
4
Input
11
5 4 5 5 6 7 8 8 8 7 6
Output
5

Hint

In the first sample, the longest almost constant range is [2, 5]; its length (the number of data points in it) is 4.

In the second sample, there are three almost constant ranges of length 4: [1, 4], [6, 9] and [7, 10]; the only almost constant range of the maximum length 5 is [6, 10].


思路:

一开始各种想LIS,但是CF再次证明了前两道题目全是想法题(虽然想法并不比算法简单= =~)

首先是要在一整个数段中找到其中的一个子数段,在它的M-m<=1的情况下使其len最大

那么这里就涉及到两个思维的关键点:

(1)不同状态之间的转换:为每个状态设置一个M和m,对于每一个后进入的点判断是否可以继续维持前一状态,如果可以就count++

(2)要意识到新状态的开始点并不一定是旧状态的结束点:可能有一点使得原来的状态不能够持续下去而结束了,但是并不意味着这一点就是新状态的开始点,在维持旧状态的过程中可能就出现了新状态的开始点,这点主要到了以后只要根据不同的情况去找那个开始点就OK了


#include <iostream>
using namespace std; int m,M,n;
int num[]; bool ok(int t)
{
if(m==M) {
if(t==m)
return true;
else if(t == m-||t == m+)
return true;
else
return false;
}
else {
if(t==M||t==m)
return true;
else
return false;
}
} int main()
{
while(cin>>n)
{
cin>>num[];
m = num[];
M = num[];
int count = ;
int ans = ;
for(int i = ;i <= n;i++)
{
cin>>num[i];
if(ok(num[i]))
{
if(m==M && num[i] == m-)
m = num[i];
else if(m==M && num[i] == m+)
M = num[i];
count++;
}
else {
if(m == M) {
M = m = num[i];
count = ;
}
else {
int pos;
if(num[i] == num[i-]+) {
M = num[i];
m = num[i-];
for(int j = i-;j >= ;j--)
{
if(num[j] != num[i-])
break;
pos = j;
}
count = i-pos+;//此时的count应该=当前的坐标-s段开始的坐标
}
else if(num[i] == num[i-]-) {
M = num[i-];
m = num[i];
for(int j = i-;j >= ;j--)
{
if(num[j] != num[i-])
break;
pos = j;
}
count = i-pos+;//同上
}
else {
M = m = num[i];
count = ;
}
}
}
ans = max(ans,count);
}
cout<<ans<<endl;
}
return ;
}

CF-Approximating a Constant Range的更多相关文章

  1. FZU 2016 summer train I. Approximating a Constant Range 单调队列

    题目链接: 题目 I. Approximating a Constant Range time limit per test:2 seconds memory limit per test:256 m ...

  2. Codeforces 602B Approximating a Constant Range(想法题)

    B. Approximating a Constant Range When Xellos was doing a practice course in university, he once had ...

  3. Codeforces Round #333 (Div. 2) B. Approximating a Constant Range st 二分

    B. Approximating a Constant Range Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com ...

  4. cf602B Approximating a Constant Range

    B. Approximating a Constant Range time limit per test 2 seconds memory limit per test 256 megabytes ...

  5. Codeforces Round #333 (Div. 2) B. Approximating a Constant Range

    B. Approximating a Constant Range Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com ...

  6. codeforce -602B Approximating a Constant Range(暴力)

    B. Approximating a Constant Range time limit per test 2 seconds memory limit per test 256 megabytes ...

  7. 【32.22%】【codeforces 602B】Approximating a Constant Range

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  8. CF 602B Approximating a Constant Range

    (●'◡'●) #include<iostream> #include<cstdio> #include<cmath> #include<algorithm& ...

  9. 【CodeForces 602C】H - Approximating a Constant Range(dijk)

    Description through n) and m bidirectional railways. There is also an absurdly simple road network — ...

  10. #333 Div2 Problem B Approximating a Constant Range(尺取法)

    题目:http://codeforces.com/contest/602/problem/B 题意 :给出一个含有 n 个数的区间,要求找出一个最大的连续子区间使得这个子区间的最大值和最小值的差值不超 ...

随机推荐

  1. Android中的多媒体显示之图片缩放

    一:图片OOM异常: 代码示例: public class MainActivity extends Activity { private ImageView iv_imageView; protec ...

  2. 初学者学Java(十五)

    再谈数组 在这一篇中我们来讲一下关于数组的排序和查找的方法. 排序 说到数组的排序,就不得不说冒泡这种经典的方法. 1.冒泡排序 冒泡排序的基本思想是比较两个相邻元素的值,如果满足条件就交换元素的值( ...

  3. Android使用GridView实现日历功能(详细代码)

    代码有点多,发个图先: 如果懒得往下看的,可以直接下载源码吧(0分的),最近一直有人要,由于时间太久了,懒得找出来整理,今天又看到有人要,正好没事就整理了一下 http://download.csdn ...

  4. 配置keil MDK和keil C51共存

    配置keil MDK和keil C51共存:1.首先安装keilMDK或者安装KeilC51其中一个:2.安装到D:\keil路径下,按照默认的配置安装,完成:3.使用管理员身份打开安装好的软件,打开 ...

  5. NYOJ-569最大公约数之和

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=569 此题目可以用筛选法的思想来做,但是用到一个欧拉函数 gcd(1,12)=1,gcd( ...

  6. spring03autowire属性

    1.创建需要的实体类 public class Student { //学生实体类 private String name; //姓名 private Integer age; //年龄 privat ...

  7. Wpf解决TextBox文件拖入问题、拖放问题

    在WPF中,当我们尝试向TextBox中拖放文件,从而获取其路径时,往往无法成功(拖放文字可以成功).造成这种原因关键是WPF的TextBox对拖放事件处理机制的不同, 解放方法如下: 使用Previ ...

  8. HTML中常用鼠标样式

    语法:cursor : auto | all-scroll | col-resize| crosshair | default | hand | move | help | no-drop | not ...

  9. RecycleView 滑动到底部,加载更多

    android.support.v7 包提供了一个新的组件:RecycleView,用以提供一个灵活的列表试图.显示大型数据集,它支持局部刷新.显示动画等功能,可以用来取代ListView与GridV ...

  10. iptables阻止服务器被攻击

    下列规则将会阻止来自某一特定IP范围内的数据包,因为该IP地址范围被管理员怀疑有大量恶意攻击者在活动:  # iptables -t filter -A INPUT -s 123.456.789.0/ ...