题目大意:给一个字符串S,令F(x)表示S的所有长度为x的子串中,出现次数的最大值。F(1)..F(Length(S))

建出SAM, 然后求出Right, 求Right可以按拓扑序dp..Right就是某个点到结束状态的路径数, parent树上last的那一条链都是结束状态...然后用Right去更新答案..

spoj卡常数..一开始用DFS就炸了, 改用BFS就A了..

(贴一下丽洁姐的题解: 我们构造S的SAM,那么对于一个节点s,它的长度范围是[Min(s),Max(s)],同时他的出现次数是|Right(s)|。那么我们用|Right(s)|去更新F(Max(s))的值。同时最后从大到小依次用F(i)去更新F(i-1)即可。)

-----------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
 
using namespace std;
 
const int cn = 26;
const int maxn = 1000009;
 
bool vis[maxn];
int Right[maxn], ans[maxn], deg[maxn], n = 0, N;
char s[maxn];
 
struct Node {
Node *ch[cn], *fa;
int len, id;
} pool[maxn], *pt, *root, *last;
 
Node* newNode(int v) {
memset(pt->ch, 0, sizeof pt->ch);
pt->fa = 0;
pt->len = v;
pt->id = n++;
return pt++;
}
 
void SAM_init() {
pt = pool;
root = last = newNode(0);
}
 
void Extend(int c) {
Node *p = last, *np = newNode(p->len + 1);
for(; p && !p->ch[c]; p = p->fa)
p->ch[c] = np;
if(!p)
np->fa = root;
else {
Node* q = p->ch[c];
if(p->len + 1 == q->len)
np->fa = q;
else {
Node* nq = newNode(p->len + 1);
memcpy(nq->ch, q->ch, sizeof q->ch);
nq->fa = q->fa;
q->fa = np->fa = nq;
for(; p && p->ch[c] == q; p = p->fa)
p->ch[c] = nq;
}
}
last = np;
}
 
struct edge {
int to;
edge* next;
} E[maxn], *Pt = E, *head[maxn];
 
void AddEdge(int u, int v) {
deg[Pt->to = v]++; Pt->next = head[u]; head[u] = Pt++;
}
 
void SAM_build() {
scanf("%s", s);
N = strlen(s);
for(int i = 0; i < N; i++)
Extend(s[i] - 'a');
}
 
queue<Node*> q;
queue<int> Q;
 
void ADDEDGE() {
memset(deg, 0, sizeof deg);
memset(vis, 0, sizeof vis);
q.push(root);
vis[root->id] = true;
while(!q.empty()) {
Node* t = q.front(); q.pop();
for(int i = 0; i < cn; i++) if(t->ch[i]) {
AddEdge(t->ch[i]->id, t->id);
if(!vis[t->ch[i]->id]) {
q.push(t->ch[i]);
vis[t->ch[i]->id] = true;
}
}
}
}
 
void getRight() {
memset(Right, 0, sizeof Right);
for(Node* t = last; t; t = t->fa)
Right[t->id] = 1;
Q.push(last->id);
while(!Q.empty()) {
int x = Q.front(); Q.pop();
for(edge* e = head[x]; e; e = e->next) {
Right[e->to] += Right[x];
if(!--deg[e->to])
Q.push(e->to);
}
}
}
 
void update() {
memset(vis, 0, sizeof vis);
q.push(root);
vis[root->id] = true;
while(!q.empty()) {
Node* t = q.front(); q.pop();
ans[t->len] = max(ans[t->len], Right[t->id]);
for(int i = 0; i < cn; i++) if(t->ch[i] && !vis[t->ch[i]->id]) {
q.push(t->ch[i]);
vis[t->ch[i]->id] = true;
}
}
}
 
void solve() {
getRight();
update();
for(int i = N; --i; )
ans[i] = max(ans[i], ans[i + 1]);
for(int i = 1; i <= N; i++)
printf("%d\n", ans[i]);
}
 
int main() {
SAM_init();
SAM_build();
ADDEDGE();
solve();
return 0;
}

-----------------------------------------------------------------------------

SPOJ8222 Substrings( 后缀自动机 + dp )的更多相关文章

  1. SP8222 NSUBSTR - Substrings(后缀自动机+dp)

    传送门 解题思路 首先建出\(sam\),然后把\(siz\)集合通过拓扑排序算出来.对于每个点只更新它的\(maxlen\),然后再从大到小\(dp\)一次就行了.因为\(f[maxlen-1]&g ...

  2. 【bzoj3998】[TJOI2015]弦论 后缀自动机+dp

    题目描述 对于一个给定长度为N的字符串,求它的第K小子串是什么. 输入 第一行是一个仅由小写英文字母构成的字符串S 第二行为两个整数T和K,T为0则表示不同位置的相同子串算作一个.T=1则表示不同位置 ...

  3. 【SPOJ -NSUBSTR】Substrings 【后缀自动机+dp】

    题意 给出一个字符串,要你找出所有长度的子串分别的最多出现次数. 分析 我们建出后缀自动机,然后预处理出每个状态的cnt,cnt[u]指的是u这个状态的right集合大小.我们设f[len]为长度为l ...

  4. Substrings(SPOJ8222) (sam(后缀自动机))

    You are given a string \(S\) which consists of 250000 lowercase latin letters at most. We define \(F ...

  5. SPOJ8222 NSUBSTR - Substrings(后缀自动机)

    You are given a string S which consists of 250000 lowercase latin letters at most. We define F(x) as ...

  6. SPOJ NSUBSTR Substrings 后缀自动机

    人生第一道后缀自动机,总是值得纪念的嘛.. 后缀自动机学了很久很久,先是看CJL的论文,看懂了很多概念,关于right集,关于pre,关于自动机的术语,关于为什么它是线性的结点,线性的连边.许多铺垫的 ...

  7. bzoj 2806: [Ctsc2012]Cheat 后缀自动机DP

    2806: [Ctsc2012]Cheat Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 583  Solved: 330[Submit][Statu ...

  8. fjwc2019 D1T2 原样输出(后缀自动机+dp)

    #179. 「2019冬令营提高组」原样输出 暴力对每个串建后缀自动机,然后暴力枚举每个自动机的子串.可以拿到部分分. 然鹅我们可以把每个后缀自动机连起来. 我们知道,后缀自动机是用最少的点(空间)表 ...

  9. 【CF316G3】Good Substrings 后缀自动机

    [CF316G3]Good Substrings 题意:给出n个限制(p,l,r),我们称一个字符串满足一个限制当且仅当这个字符串在p中的出现次数在[l,r]之间.现在想问你S的所有本质不同的子串中, ...

随机推荐

  1. this .运算符 和 [] 运算符

    首先看这个  这两个运行结果是不一样的 前两个是3  后面是10 var length = 10; var arr = [function(){console.log(this.length);},2 ...

  2. 转:CI伪静态化

    去掉php框架CI默认url中的index.php 2010-03-17 17:33:07|  分类: php框架ci |字号 订阅   CI默认的rewrite url中是类似这样的,例如你的CI根 ...

  3. 在PADS LAYOUT中如何隐藏不需要的鼠线?

    如下图示,将net GPR_0的鼠线隐藏. 鼠标右键,选择网络----选择你要隐藏的网络------右键选择view nets----点击对话框右边View List里你所选的网络-----在右下角t ...

  4. SQL SERVER表不能修改表结构的处理方法

    SQL SERVER表提示不能修改表结构,这究竟是什么原因呢?下面就为您介绍处理该问题的方法,如果您在SQL SERVER表修改方面遇到过问题,不妨一看. 新装的SQL SERVER 2008,打开原 ...

  5. 第七届河南省赛F.Turing equation(模拟)

    10399: F.Turing equation Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 151  Solved: 84 [Submit][St ...

  6. qt4.8.4安装以及64位程序编译方法

    本文将使用简单的几个步骤说明在vc2008和64位的操作系统下如何编译安装x64Qt软件 首先必须保证你所使用的系统是64bit的操作系统,本次我们使用的系统是windows7 professiona ...

  7. OpenVPN多处理之-多队列TUN多线程

    1.有一点不正确劲 在改动了那个TUN驱动后,我在想,为何我总是对一些驱动程序进行修修补补而从来不从应用程序找解决方式呢?我改动了那个TUN驱动,可是能保证我的改动对别的应用一样可用吗?难道TUN驱动 ...

  8. Cocos2d-X 动作展示《一》

    因为Cocos2d-X中的动作较多,我将全部的动作制作成了一个滚动视图.每一个滚动视图上都有动作名,单击滚动视图就能够展示对应的动作 程序效果图: 使用滚动视图实现动作切换 动作展示 程序代码: 首先 ...

  9. css版hover现边框

    需要注意的是  hover中要给盒子加:position:relative; <style type="text/css"> *{margin:0;padding:0; ...

  10. SQL Server索引进阶:第六级,标签

    原文地址: Stairway to SQL Server Indexes: Level 6,Bookmarks 本文是SQL Server索引进阶系列(Stairway to SQL Server I ...