增量法的最小包围圈算法,不会……

#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
const double EPS = 1e-10;
inline int sgn(double x) { return (x > EPS) - (x < -EPS);}
struct Point {
double x, y;
Point() {}
Point(double x, double y) : x(x),y(y) {}
bool operator < (Point a) const { return sgn(x - a.x) < 0 || sgn(x - a.x) == 0 && sgn(y - a.y) < 0;}
bool operator == (Point a) const { return sgn(x - a.x) == 0 && sgn(y - a.y) == 0;}
Point operator + (Point a) const { return Point(x + a.x, y + a.y);}
Point operator - (Point a) const { return Point(x - a.x, y - a.y);}
Point operator * (double p) const { return Point(x * p, y * p);}
Point operator / (double p) const { return Point(x / p, y / p);}
} ;
typedef Point Vec;
inline double crossDet(Vec a, Vec b) { return a.x * b.y - a.y * b.x;}
inline double crossDet(Point o, Point a, Point b) { return crossDet(a - o, b - o);}
inline double dotDet(Vec a, Vec b) { return a.x * b.x + a.y * b.y;}
inline double vecLen(Vec x) { return sqrt(dotDet(x, x));}
inline Point normal(Vec x) { return Point(-x.y, x.x) / vecLen(x);}
Point lineIntersect(Point P, Vec v, Point Q, Vec w) {
Vec u = P - Q;
double t = crossDet(w, u) / crossDet(v, w);
return P + v * t;
}
inline Point getMid(Point a, Point b) { return (a + b) / 2.0;}
struct Circle {
Point c;
double r;
Circle() {}
Circle(Point c, double r) : c(c), r(r) {}
} ; Circle getCircle(Point a, Point b, Point c) {
Vec v1 = b - a, v2 = c - a;
if (sgn(dotDet(b - a, c - a)) <= 0) return Circle(getMid(b, c), vecLen(b - c) / 2.0);
if (sgn(dotDet(a - b, c - b)) <= 0) return Circle(getMid(a, c), vecLen(a - c) / 2.0);
if (sgn(dotDet(a - c, b - c)) <= 0) return Circle(getMid(a, b), vecLen(a - b) / 2.0);
Point ip = lineIntersect(getMid(a, b), normal(v1), getMid(a, c), normal(v2));
return Circle(ip, vecLen(ip - a));
}
int andrew(Point *pt, int n, Point *ch) {
sort(pt, pt + n);
int m = 0;
for (int i = 0; i < n; i++) {
while (m > 1 && sgn(crossDet(ch[m - 2], ch[m - 1], pt[i])) <= 0) m--;
ch[m++] = pt[i];
}
int k = m;
for (int i = n - 2; i >= 0; i--) {
while (m > k && sgn(crossDet(ch[m - 2], ch[m - 1], pt[i])) <= 0) m--;
ch[m++] = pt[i];
}
if (n > 1) m--;
return m;
}
const int N = 555;
Point pt[N], ch[N];
int rnd[N];
void randPoint(Point *pt, int n) {
for (int i = 0; i < n; i++) rnd[i] = (rand() % n + n) % n;
for (int i = 0; i < n; i++) swap(pt[i], pt[rnd[i]]);
}
inline bool inCircle(Point p, Circle C) { return sgn(vecLen(C.c - p) - C.r) <= 0;}
int main() {
int n;
while (cin >> n && n) {
for (int i = 0; i < n; i++) scanf("%lf%lf", &pt[i].x, &pt[i].y);
n = andrew(pt, n, ch);
randPoint(ch, n);
Circle ans = Circle(ch[0], 0.0), tmp;
for (int i = 0; i < n; i++) {
if (inCircle(ch[i], ans)) continue;
ans = Circle(ch[i], 0.0);
for (int j = 0; j < i; j++) {
if (inCircle(ch[j], ans)) continue;
ans = Circle(getMid(ch[i], ch[j]), vecLen(ch[i] - ch[j]) / 2.0);
for (int k = 0; k < j; k++) {
if (inCircle(ch[k], ans)) continue;
ans = getCircle(ch[i], ch[j], ch[k]);
}
}
}
printf("%.2f\n", ans.r + 0.5);
}
return 0;
}

HDU 2215 Maple trees的更多相关文章

  1. (hdu step 7.1.5)Maple trees(凸包的最小半径寻找掩护轮)

    称号: Maple trees Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...

  2. hdu 2215 & hdu 3932(最小覆盖圆)

    Maple trees Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  3. Maple trees(最小覆盖圆)

    Maple trees Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...

  4. HDU 2841 Visible Trees 数论+容斥原理

    H - Visible Trees Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  5. HDU 2841 Visible Trees(莫比乌斯反演)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2841 题意:给n*m的矩阵(从(1,1)开始编号)格子,每个格子有一棵树,人站在(0,0)的位置,求可 ...

  6. HDU p1294 Rooted Trees Problem 解题报告

    http://www.cnblogs.com/keam37/p/3639294.html keam所有 转载请注明出处 Problem Description Give you two definit ...

  7. HDU 2841 Visible Trees(数论)

    标题效果:给你个m*n方格,广场格从(1,1)开始. 在树中的每个点,然后让你(0,0)点往下看,问:你能看到几棵树. 解题思路:假设你的视线被后面的树和挡住的话以后在这条线上的树你是都看不见的啊.挡 ...

  8. hdu 2841 Visible Trees 容斥原理

    Visible Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Pr ...

  9. hdu 3015 Disharmony Trees (离散化+树状数组)

    Disharmony Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

随机推荐

  1. android入门——UI(6)——ViewPager+Menu+PopupWindow

    一.使用ViewPager开发新特性引导界面 <?xml version="1.0" encoding="utf-8"?> <Relative ...

  2. android入门——UI(5)

    最近时间实在匆忙,博客的代码基本没有解释. 介绍ExpandableListView <?xml version="1.0" encoding="utf-8&quo ...

  3. Android知识简单测试题

    上周去了一场Android考试,前面基础的题目很简单却答不上来,看过跟做过,懂了和会讲差距还是很大的,下面整理一下还记得的几个问题,自勉! 还是觉得,要好好看官方文档才是正道的啊! 1. Androi ...

  4. WPF-MVC开发模式简要介绍

    1, 建立WPF程序,并在程序中添加三个文件View,ViewMoudle,Moudle, 2,Moudle文件加中添加类,此文件夹中存放的类基本为数据类,主要是字段和属性 3 ViewMoudle文 ...

  5. wcf综合运用之:大文件异步断点续传

    在WCF下作大文件的上传,首先想到使用的就是Stream,这也是微软推荐的使用方式.处理流程是:首先把文件加载到内存中,加载完毕后传递数据.这种处理方式对小文件,值得推荐,比如几K,几十k的图片文件, ...

  6. no data type for node

    java.lang.IllegalStateException: No data type for node: org.hibernate.hql.ast.tree.IdentNode  \-[IDE ...

  7. 0. chromium源代码分析 - 序

    本打算在CSDN写完这系列文字,却因为在CSDN中误删了一篇blog,该篇blog被移到了回收站.然而CSDN居然没有从回收站撤销删除的操作方法.联想到之前CSDN泄密的问题,其可靠性值得怀疑.随转向 ...

  8. 树莓派高级GPIO库,wiringpi2 for python使用笔记(五)i2c读取测试

    wiringpi2显然也把i2c驱动带给了Python,手头上正巧有一个DS3231的模块,上边带了一个DS3231 RTC(实时时钟),与一片24C32,两个芯片均为iic总线设备,与树莓派接线如下 ...

  9. jquery常用选择器(转)

    jQuery 的选择器可谓之强大无比,这里简单地总结一下常用的元素查找方法 $("#myELement") 选择id值等于myElement的元素,id值不能重复在文档中只能有一个 ...

  10. 通过web远程访问服务器的ipython

    如果想同过一个Web浏览器的方式远程访问服务器上的ipython notebook sever,可通过下面的步骤实现. 服务器:ubuntu14.04 server 客户端:windows/unix/ ...