增量法的最小包围圈算法,不会……

#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
const double EPS = 1e-10;
inline int sgn(double x) { return (x > EPS) - (x < -EPS);}
struct Point {
double x, y;
Point() {}
Point(double x, double y) : x(x),y(y) {}
bool operator < (Point a) const { return sgn(x - a.x) < 0 || sgn(x - a.x) == 0 && sgn(y - a.y) < 0;}
bool operator == (Point a) const { return sgn(x - a.x) == 0 && sgn(y - a.y) == 0;}
Point operator + (Point a) const { return Point(x + a.x, y + a.y);}
Point operator - (Point a) const { return Point(x - a.x, y - a.y);}
Point operator * (double p) const { return Point(x * p, y * p);}
Point operator / (double p) const { return Point(x / p, y / p);}
} ;
typedef Point Vec;
inline double crossDet(Vec a, Vec b) { return a.x * b.y - a.y * b.x;}
inline double crossDet(Point o, Point a, Point b) { return crossDet(a - o, b - o);}
inline double dotDet(Vec a, Vec b) { return a.x * b.x + a.y * b.y;}
inline double vecLen(Vec x) { return sqrt(dotDet(x, x));}
inline Point normal(Vec x) { return Point(-x.y, x.x) / vecLen(x);}
Point lineIntersect(Point P, Vec v, Point Q, Vec w) {
Vec u = P - Q;
double t = crossDet(w, u) / crossDet(v, w);
return P + v * t;
}
inline Point getMid(Point a, Point b) { return (a + b) / 2.0;}
struct Circle {
Point c;
double r;
Circle() {}
Circle(Point c, double r) : c(c), r(r) {}
} ; Circle getCircle(Point a, Point b, Point c) {
Vec v1 = b - a, v2 = c - a;
if (sgn(dotDet(b - a, c - a)) <= 0) return Circle(getMid(b, c), vecLen(b - c) / 2.0);
if (sgn(dotDet(a - b, c - b)) <= 0) return Circle(getMid(a, c), vecLen(a - c) / 2.0);
if (sgn(dotDet(a - c, b - c)) <= 0) return Circle(getMid(a, b), vecLen(a - b) / 2.0);
Point ip = lineIntersect(getMid(a, b), normal(v1), getMid(a, c), normal(v2));
return Circle(ip, vecLen(ip - a));
}
int andrew(Point *pt, int n, Point *ch) {
sort(pt, pt + n);
int m = 0;
for (int i = 0; i < n; i++) {
while (m > 1 && sgn(crossDet(ch[m - 2], ch[m - 1], pt[i])) <= 0) m--;
ch[m++] = pt[i];
}
int k = m;
for (int i = n - 2; i >= 0; i--) {
while (m > k && sgn(crossDet(ch[m - 2], ch[m - 1], pt[i])) <= 0) m--;
ch[m++] = pt[i];
}
if (n > 1) m--;
return m;
}
const int N = 555;
Point pt[N], ch[N];
int rnd[N];
void randPoint(Point *pt, int n) {
for (int i = 0; i < n; i++) rnd[i] = (rand() % n + n) % n;
for (int i = 0; i < n; i++) swap(pt[i], pt[rnd[i]]);
}
inline bool inCircle(Point p, Circle C) { return sgn(vecLen(C.c - p) - C.r) <= 0;}
int main() {
int n;
while (cin >> n && n) {
for (int i = 0; i < n; i++) scanf("%lf%lf", &pt[i].x, &pt[i].y);
n = andrew(pt, n, ch);
randPoint(ch, n);
Circle ans = Circle(ch[0], 0.0), tmp;
for (int i = 0; i < n; i++) {
if (inCircle(ch[i], ans)) continue;
ans = Circle(ch[i], 0.0);
for (int j = 0; j < i; j++) {
if (inCircle(ch[j], ans)) continue;
ans = Circle(getMid(ch[i], ch[j]), vecLen(ch[i] - ch[j]) / 2.0);
for (int k = 0; k < j; k++) {
if (inCircle(ch[k], ans)) continue;
ans = getCircle(ch[i], ch[j], ch[k]);
}
}
}
printf("%.2f\n", ans.r + 0.5);
}
return 0;
}

HDU 2215 Maple trees的更多相关文章

  1. (hdu step 7.1.5)Maple trees(凸包的最小半径寻找掩护轮)

    称号: Maple trees Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...

  2. hdu 2215 & hdu 3932(最小覆盖圆)

    Maple trees Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  3. Maple trees(最小覆盖圆)

    Maple trees Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...

  4. HDU 2841 Visible Trees 数论+容斥原理

    H - Visible Trees Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  5. HDU 2841 Visible Trees(莫比乌斯反演)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2841 题意:给n*m的矩阵(从(1,1)开始编号)格子,每个格子有一棵树,人站在(0,0)的位置,求可 ...

  6. HDU p1294 Rooted Trees Problem 解题报告

    http://www.cnblogs.com/keam37/p/3639294.html keam所有 转载请注明出处 Problem Description Give you two definit ...

  7. HDU 2841 Visible Trees(数论)

    标题效果:给你个m*n方格,广场格从(1,1)开始. 在树中的每个点,然后让你(0,0)点往下看,问:你能看到几棵树. 解题思路:假设你的视线被后面的树和挡住的话以后在这条线上的树你是都看不见的啊.挡 ...

  8. hdu 2841 Visible Trees 容斥原理

    Visible Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Pr ...

  9. hdu 3015 Disharmony Trees (离散化+树状数组)

    Disharmony Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

随机推荐

  1. ##DAY13——可视化编程之XIB

    ##DAY13——可视化编程之XIB 1.关联控件 2.关联事件 3.关联手势 4.关联代理 这个时候即使不给控制器用下面方法添加代理,代理方法也是可以使用的,只是没有方法提示: 其他重要地方: #i ...

  2. MySql学习之varchar类型

    MySQL 数据库的varchar类型在4.1以下的版本中的最大长度限制为255,其数据范围可以是0~255或1~255(根据不同版本数据库来定),在 MySQL5.0以上的版本中,varchar数据 ...

  3. C++学习之友元类和友元函数

    C++学习之友元类和友元函数       模板类声明也可以有友元,模板的友元可以分为以下几类:        1.非模板友元:        2.约束模板友元,即就是友元的类型取决于类被实例化的时候的 ...

  4. Java中的流程控制(二)

    关于Java程序的流程控制(二) 关于Java程序的流程控制(二) 3.switch选择语句 switch语句用于将一个表达式的值同许多其他值比较,并按比较结果选择下面该执行哪些语句. switch( ...

  5. hdu 3518 Boring counting 后缀数组

    题目链接 根据height数组的性质分组计算. #include <iostream> #include <vector> #include <cstdio> #i ...

  6. 【LeetCode题意分析&解答】36. Valid Sudoku

    Determine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules. The Sudoku board could be ...

  7. Mysql 忘密码 + Phpadmin 修改密码无法登陆

    mysql有时候忘记密码了怎么办?我给出案例和说明!一下就解决了! Windows下的实际操作如下 1.关闭正在运行的MySQL. 2.打开DOS窗口,转到mysql\bin目录. 3.输入mysql ...

  8. Codeforces 701C They Are Everywhere(Two pointers+STL)

    [题目链接] http://codeforces.com/problemset/problem/701/C [题目大意] 给出 一个字符串,里面包含一定种类的字符,求出一个最短的子串,使得其包含该字符 ...

  9. 《windows程序设计》学习_2.1:初识消息

    #include <windows.h> //#define WM_MYMSG (WM_USER +100) LRESULT CALLBACK WndProc(HWND,UINT,WPAR ...

  10. Euromonitor 2013年奢侈品报告精选 |华丽志

    Euromonitor 2013年奢侈品报告精选 |华丽志 Euromonitor 2013年奢侈品报告精选