Today, Yelp held a tech talk in Columbia University about the data warehouse adopted by Yelp.

Yelp used Amazon Redshift as data warehouse.

There are several features for Redshift:

1. Massively Parellel Processing

2. SQL access

3. Column-based Datastore

Benefits are:

1. Data is structured, accessible and well documented.
2. Architecture allows for easy extensibility and sharing across teams.
3. Allows use of entire SQL-compatible tool ecosystem.

Details:

Massively Parellel Processing (MMP)

Traditional BigData always uses Hadoop + MapReduce. MapReduce's native control mechanism is Java code (to implement the Map and Reduce logic), whereas MPP products are queried with SQL(Structural Query Language). You can refer detail here.

Below is the structure for implementing MMP.

Similarly, Data is distributed across each segment database to achieve data and processing parallelism. This is achieved by creating a database table with DISTRIBUTED BY clause. By using this clause data is automatically distributed across segment databases. (referrence: Introduction to MMP)

Typical query sentence in MMP

Column-based Datastore

Enables sparse table definitions
Enables compact storage
Improve scanning/filtering

(Benefits: wiki)

Column-based Datastore

  1. Column-oriented organizations are more efficient when an aggregate needs to be computed over many rows but only for a notably smaller subset of all columns of data, because reading that smaller subset of data can be faster than reading all data.
  2. Column-oriented organizations are more efficient when new values of a column are supplied for all rows at once, because that column data can be written efficiently and replace old column data without touching any other columns for the rows.
  3. Row-oriented organizations are more efficient when many columns of a single row are required at the same time, and when row-size is relatively small, as the entire row can be retrieved with a single disk seek.
  4. Row-oriented organizations are more efficient when writing a new row if all of the row data is supplied at the same time, as the entire row can be written with a single disk seek.

In practice, row-oriented storage layouts are well-suited for OLTP-like workloads which are more heavily loaded with interactive transactions. Column-oriented storage layouts are well-suited for OLAP-like workloads (e.g., data warehouses) which typically involve a smaller number of highly complex queries over all data (possibly terabytes).

Amazon Redshift and Massively Parellel Processing的更多相关文章

  1. Amazon Redshift数据库

    Amazon Redshift介绍 Amazon Redshift是一种可轻松扩展的完全托管型PB级数据仓库,它通过使用列存储技术和并行化多个节点的查询来提供快速的查询性能,使您能够更高效的分析现有数 ...

  2. Power BI连接至Amazon Redshift

    一直在使用Power BI连接至MongoDB中,但效果一直不是太理想,今天使用另一种方法,将MongoDB中的数据通过Azure Data Factory转入Amazon Redshift中,而在P ...

  3. amazon redshift 分析型数据库特点——本质还是列存储

    Amazon Redshift 是一种快速且完全托管的 PB 级数据仓库,使您可以使用现有的商业智能工具经济高效地轻松分析您的所有数据.从最低 0.25 USD 每小时 (不承担任何义务) 直到每年每 ...

  4. Amazon Redshift数据迁移到MaxCompute

    Amazon Redshift数据迁移到MaxCompute Amazon Redshift 中的数据迁移到MaxCompute中经常需要先卸载到S3中,再到阿里云对象存储OSS中,大数据计算服务Ma ...

  5. POWER BI 基于 ODBC 数据源的配置刷新-以Amazon Redshift为例

    POWER BI 基于 ODBC 数据源的配置刷新-以Amazon Redshift为例 Powerbi 有多种数据源连接,可以使用它们连接到不同数据源. 如果在 Power BI Desktop 的 ...

  6. Amazon Redshift and the Case for Simpler Data Warehouses

    Redshift是Amazon一个商业产品上的进化 但并不是技术的进化,他使用的无非都是传统数仓领域的技术 如果说创新,就是大量使用Amazon本身的云服务的云原生架构,大大提升的产品的迭代速度,可维 ...

  7. Python 如何连接并操作 Aws 上 PB 级云数据仓库 Redshift

    Python 如何连接并操作 Aws 上 PB 级云数据仓库 Redshift 一.简介 Amazon Redshift 是一个快速.可扩展的数据仓库,可以简单.经济高效地分析数据仓库和数据湖中的所有 ...

  8. Qwiklab'实验-DynamoDB, Redshift, Elasticsearch'

    title: AWS之Qwiklab subtitle: 4. Qwiklab'实验-Amazon DynamoDB, Amazon Redshift, Elasticsearch Service' ...

  9. Massively parallel supercomputer

    A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures ba ...

随机推荐

  1. Linux Top 命令

    TOP命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况. TOP是一个动态显示过程,即可以通过用户按键来不断刷新当前状态.如果在前台执行该命令,它将独占前台,直到用户终止 ...

  2. pyqt sender()学习

    #!/usr/bin/python # -*- coding: utf-8 -*- # sender.py import sys from PyQt4 import QtGui, QtCore cla ...

  3. hdu4506小明系列故事——师兄帮帮忙 (用二进制,大数高速取余)

    Problem Description 小明自从告别了ACM/ICPC之后,就開始潜心研究数学问题了,一则能够为接下来的考研做准备,再者能够借此机会帮助一些同学,尤其是美丽的师妹.这不,班里唯一的女生 ...

  4. xtrabackup备份恢复测试

    http://blog.chinaunix.net/uid-20682026-id-3319204.html

  5. echarts演示笔记

    http://echarts.baidu.com/doc/start.html 1.新建一个echarts.html文件,为ECharts准备一个具备大小(宽高)的Dom. <!DOCTYPE ...

  6. CLR via C# - 基础拾遗

    编译器开关设置 IL代码质量 JIT本地代码质量 /optimize- /debug-(默认设置) 未优化 优化 /optimize- /debug+(full/pdbonly) 未优化 未优化 /o ...

  7. 导出word文档

    string id = Request["id"];            if (string.IsNullOrEmpty(id))            {           ...

  8. 关于找工作(二 Cover Letter)

    准备好了简历,下一个文档就是cover letter了.其实对衡量你是否是一个好的候选人来说,cover letter的作用几乎是零(很多情况下主管技术工作的人或者雇人经理根本见不到cover let ...

  9. 安装SQL2008时遇到"未能加载文件或"file:///d:microsoft..sql.chainer.packagedata.dll"或它的某个依赖项

    安装SQL2008时遇到"未能加载文件或"file:///d:microsoft..sql.chainer.packagedata.dll"或它的某个依赖项,如下图所示 ...

  10. MYSQL开发技巧之行转列和列转行

    行转列--两种方法第一种方法:行转列我们通常是使用交叉连接和子查询的方式做到,比如下面的例子,查询每个name的对应id的和mysql> select * from user; +----+-- ...