Today, Yelp held a tech talk in Columbia University about the data warehouse adopted by Yelp.

Yelp used Amazon Redshift as data warehouse.

There are several features for Redshift:

1. Massively Parellel Processing

2. SQL access

3. Column-based Datastore

Benefits are:

1. Data is structured, accessible and well documented.
2. Architecture allows for easy extensibility and sharing across teams.
3. Allows use of entire SQL-compatible tool ecosystem.

Details:

Massively Parellel Processing (MMP)

Traditional BigData always uses Hadoop + MapReduce. MapReduce's native control mechanism is Java code (to implement the Map and Reduce logic), whereas MPP products are queried with SQL(Structural Query Language). You can refer detail here.

Below is the structure for implementing MMP.

Similarly, Data is distributed across each segment database to achieve data and processing parallelism. This is achieved by creating a database table with DISTRIBUTED BY clause. By using this clause data is automatically distributed across segment databases. (referrence: Introduction to MMP)

Typical query sentence in MMP

Column-based Datastore

Enables sparse table definitions
Enables compact storage
Improve scanning/filtering

(Benefits: wiki)

Column-based Datastore

  1. Column-oriented organizations are more efficient when an aggregate needs to be computed over many rows but only for a notably smaller subset of all columns of data, because reading that smaller subset of data can be faster than reading all data.
  2. Column-oriented organizations are more efficient when new values of a column are supplied for all rows at once, because that column data can be written efficiently and replace old column data without touching any other columns for the rows.
  3. Row-oriented organizations are more efficient when many columns of a single row are required at the same time, and when row-size is relatively small, as the entire row can be retrieved with a single disk seek.
  4. Row-oriented organizations are more efficient when writing a new row if all of the row data is supplied at the same time, as the entire row can be written with a single disk seek.

In practice, row-oriented storage layouts are well-suited for OLTP-like workloads which are more heavily loaded with interactive transactions. Column-oriented storage layouts are well-suited for OLAP-like workloads (e.g., data warehouses) which typically involve a smaller number of highly complex queries over all data (possibly terabytes).

Amazon Redshift and Massively Parellel Processing的更多相关文章

  1. Amazon Redshift数据库

    Amazon Redshift介绍 Amazon Redshift是一种可轻松扩展的完全托管型PB级数据仓库,它通过使用列存储技术和并行化多个节点的查询来提供快速的查询性能,使您能够更高效的分析现有数 ...

  2. Power BI连接至Amazon Redshift

    一直在使用Power BI连接至MongoDB中,但效果一直不是太理想,今天使用另一种方法,将MongoDB中的数据通过Azure Data Factory转入Amazon Redshift中,而在P ...

  3. amazon redshift 分析型数据库特点——本质还是列存储

    Amazon Redshift 是一种快速且完全托管的 PB 级数据仓库,使您可以使用现有的商业智能工具经济高效地轻松分析您的所有数据.从最低 0.25 USD 每小时 (不承担任何义务) 直到每年每 ...

  4. Amazon Redshift数据迁移到MaxCompute

    Amazon Redshift数据迁移到MaxCompute Amazon Redshift 中的数据迁移到MaxCompute中经常需要先卸载到S3中,再到阿里云对象存储OSS中,大数据计算服务Ma ...

  5. POWER BI 基于 ODBC 数据源的配置刷新-以Amazon Redshift为例

    POWER BI 基于 ODBC 数据源的配置刷新-以Amazon Redshift为例 Powerbi 有多种数据源连接,可以使用它们连接到不同数据源. 如果在 Power BI Desktop 的 ...

  6. Amazon Redshift and the Case for Simpler Data Warehouses

    Redshift是Amazon一个商业产品上的进化 但并不是技术的进化,他使用的无非都是传统数仓领域的技术 如果说创新,就是大量使用Amazon本身的云服务的云原生架构,大大提升的产品的迭代速度,可维 ...

  7. Python 如何连接并操作 Aws 上 PB 级云数据仓库 Redshift

    Python 如何连接并操作 Aws 上 PB 级云数据仓库 Redshift 一.简介 Amazon Redshift 是一个快速.可扩展的数据仓库,可以简单.经济高效地分析数据仓库和数据湖中的所有 ...

  8. Qwiklab'实验-DynamoDB, Redshift, Elasticsearch'

    title: AWS之Qwiklab subtitle: 4. Qwiklab'实验-Amazon DynamoDB, Amazon Redshift, Elasticsearch Service' ...

  9. Massively parallel supercomputer

    A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures ba ...

随机推荐

  1. Yii2 分页类的扩展和listview引用

    Yii2 本身提供了不错分页选项供用户设置,但是实际项目中我们往往需要复杂一些的分页样式,例如下图所示的效果,上下翻页可用和不可用均用图标来替换.

  2. linux find命令-print0和xargs中-0使用技巧(转载)

    本文介绍了linux find命令中-print0和xargs中-0用法技巧,一些find命令的使用经验,需要的朋友参考下. 本节内容:linux find命令中-print0和xargs中-0的用法 ...

  3. Linux usb子系统(一):子系统架构

    一.USB协议基础知识   前序:USB概念概述 USB1.0版本速度1.5Mbps(低速USB) USB1.1版本速度12Mbps(全速USB)  USB2.0版本速度480Mbps(高速USB). ...

  4. Hook linux 网络封包

    要注册一个hook函数需要用到nf_register_hook()或者nf_register_hooks()系统API和一个struct nf_hook_ops{}类型的结构体对象 一个简单的demo ...

  5. [Hapi.js] Logging with good and good-console

    hapi doesn't ship with logging support baked in. Luckily, hapi's rich plugin ecosystem includes ever ...

  6. jquery css3 手机菜单动画综合版

    html <header> <a id="go-back" href="javascript:window.location.back(-1)" ...

  7. struts2面试题

    由于找了很久的工作都没有找的,只能四处收集那个面试题的.和看面试题的 还有那个记忆力也不是很好了的,而那些公司面试的时候总会有一个面试题的!   在这里分享给大家(那个本来是想上传文件的,但是找不到的 ...

  8. 【转载】ADO.NET与ORM的比较(3):Linq to SQL实现CRUD

    [转载]ADO.NET与ORM的比较(3):Linq to SQL实现CRUD 说明:个人感觉在Java领域大型开发都离不了ORM的身影,所谓的SSH就是Spring+Struts+Hibernate ...

  9. eclipse中运行tomcat找不到jre的解决办法

    一.在eclipse中选择 window--->preferences 二.runtime environment  ----->edit 三.在这个地方就可以进行选择jre了.

  10. 1215.1——动态分配内存的补充realloc

    当再次在原来申请的内存基础上再加内存的时候用realloc,如果第一次分配的内存后面存储地方够用,则连着原来的申请,如果不够用,就重新找到一块够用的地方,然后把原来的复制过去 int main(int ...