传送门

Description

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

Example 1:

nums1 = [1, 3]
nums2 = [2] The median is 2.0

Example 2:

nums1 = [1, 2]
nums2 = [3, 4] The median is (2 + 3)/2 = 2.5

思路

题意:给定两个有序数组,在log级别的复杂度下,求得这两个数组中所有元素的中间值

题解:转换为求第k大的数。

假设A和B的元素个数都大于k/2,我们将A的第k/2个元素(即A[k/2-1])和B的第k/2个元素(即B[k/2-1])进行比较,有以下三种情况(为了简化这里先假设k为偶数,所得到的结论对于k是奇数也是成立的):

  • A[k/2-1] == B[k/2-1]
  • A[k/2-1] > B[k/2-1]
  • A[k/2-1] < B[k/2-1]

如果A[k/2-1] == B[k/2-1],意味着A[0]到A[k/2-1]的肯定在A∪B的top k元素的范围内,换句话说,A[k/2-1]不可能大于A∪B的第k大元素。

因此,我们可以放心的删除A数组的这k/2个元素。

同理,当A[k/2-1] > B[k/2-1]时,可以删除B数组的k/2个元素。

当A[k/2-1] == B[k/2-1]时,说明找到了第k大的元素,直接返回A[k/2-1]或B[k/2-1]即可。

因此,我们可以写一个递归函数。那么函数什么时候应该终止呢?

  • 当A或B是空时,直接返回B[k/2-1]或A[k/2-1];
  • 当k = 1时,返回min(A[0],B[0]);
  • 当A[k/2-1] ==B[k/2-1]时,返回A[k/2-1]或B[k/2-1]
 
C++:
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int len1 = nums1.size(),len2 = nums2.size();
int len = len1 + len2;
if (len & ){
return findKth(nums1,nums2,len / + );
} else{
return (findKth(nums1,nums2,len / ) + findKth(nums1,nums2,len / + ))/;
}
} double findKth(vector<int> nums1,vector<int> nums2,int k){
int len1 = nums1.size(),len2 = nums2.size();
if (len1 > len2) return findKth(nums2,nums1,k);
if (len1 == ) return nums2[k - ];
if (k == ) return min(nums1[],nums2[]);
int a = min(k / ,len1),b = k - a;
if (nums1[a - ] < nums2[b - ])
return findKth(vector<int>(nums1.begin() + a,nums1.end()),nums2,k - a);
else if (nums1[a - ] > nums2[b - ])
return findKth(nums1,vector<int>(nums2.begin() + b,nums2.end()),k - b);
else return nums1[a - ];
}
};

Java:

public class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int len = nums1.length + nums2.length;
if ((len & ) == ){
return findKth(nums1,nums2,len / + );
}
else{
return (findKth(nums1,nums2,len / ) + findKth(nums1,nums2,len / + )) / ;
}
} public double findKth(int[] nums1, int[] nums2,int k){
int len1 = nums1.length,len2 = nums2.length;
if (len1 > len2) return findKth(nums2,nums1,k);
if (len1 == ) return nums2[k - ];
if (k == ) return Math.min(nums1[],nums2[]);
int a = Math.min(k / ,len1),b = k - a;
if (nums1[a - ] < nums2[b - ]) return findKth(Arrays.copyOfRange(nums1, a, len1),nums2,k - a);
else if (nums1[a - ] > nums2[b - ]) return findKth(nums1,Arrays.copyOfRange(nums2,b,len2), k - b);
else return nums1[a - ];
}
}

[LeetCode] 4. Median of Two Sorted Arrays(想法题/求第k小的数)的更多相关文章

  1. 【算法之美】求解两个有序数组的中位数 — leetcode 4. Median of Two Sorted Arrays

    一道非常经典的题目,Median of Two Sorted Arrays.(PS:leetcode 我已经做了 190 道,欢迎围观全部题解 https://github.com/hanzichi/ ...

  2. LeetCode(3) || Median of Two Sorted Arrays

    LeetCode(3) || Median of Two Sorted Arrays 题记 之前做了3题,感觉难度一般,没想到突然来了这道比较难的,星期六花了一天的时间才做完,可见以前基础太差了. 题 ...

  3. 【leetcode】Median of Two Sorted Arrays

    题目简述: There are two sorted arrays A and B of size m and n respectively. Find the median of the two s ...

  4. LeetCode 4 Median of Two Sorted Arrays (两个数组的mid值)

    题目来源:https://leetcode.com/problems/median-of-two-sorted-arrays/ There are two sorted arrays nums1 an ...

  5. leetcode之 median of two sorted arrays

    这是我做的第二个leetcode题目,一开始以为和第一个一样很简单,但是做的过程中才发现这个题目非常难,给人一种“刚上战场就踩上地雷挂掉了”的感觉.后来搜了一下leetcode的难度分布表(leetc ...

  6. [LeetCode] 4. Median of Two Sorted Arrays ☆☆☆☆☆

    There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two ...

  7. Leetcode 4. Median of Two Sorted Arrays(二分)

    4. Median of Two Sorted Arrays 题目链接:https://leetcode.com/problems/median-of-two-sorted-arrays/ Descr ...

  8. LeetCode题解-----Median of Two Sorted Arrays

    题目描述: There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of t ...

  9. Leetcode 解题 Median of Two sorted arrays

    题目:there are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the ...

随机推荐

  1. Codeforces 609E (Kruskal求最小生成树+树上倍增求LCA)

    题面 传送门 题目大意: 给定一个无向连通带权图G,对于每条边(u,v,w)" role="presentation" style="position: rel ...

  2. Lpl and Energy-saving Lamps

    During tea-drinking, princess, amongst other things, asked why has such a good-natured and cute Drag ...

  3. BUUCTF--SimpleRev

    测试文件:https://buuoj.cn/files/7458c5c0ce999ac491df13cf7a7ed9f1/SimpleRev?token=eyJ0ZWFtX2lkIjpudWxsLCJ ...

  4. vue实现搜索功能

    vue实现搜索功能 template 部分 <!-- 搜索页面 --> <template> <div> <div class="goback&qu ...

  5. layui隐藏表格列

    根据需求我们需要展示某些数据,但有的时候这些数据又不该展示出来,比如不同角色看到不同数据,这个时候就会需要隐藏些数据了 我们需要在表格完成的回调进行处理 done: function (res, cu ...

  6. 02.Linux-CentOS系统Firewalld防火墙配置

    1.firewalld的基本使用 启动: systemctl start firewalld关闭: systemctl stop firewalld查看状态: systemctl status fir ...

  7. Mysql查询结果导出Excel表

    Mysql查询结果导出Excel表: 一句转换方式:$ mysql -uops -p'GCNgH000KP' dtbs -e 'select * from t_proxy__record;' --de ...

  8. 一、苹果Assets.car文件解析图片

    一. https://blog.wxhbts.com/assets.html

  9. css3 :enabled与:disabled伪类选择器

    css :enabled和:disabled伪类选择器 在Web表单中,有些表单元素(如输入框.密码框.复选框等)有“可用”和“不可用”这2种状态.默认情况下,这些表单元素都处在可用状态. 在CSS3 ...

  10. JVM加载class文件原理

    装载的概念 所谓装载就是寻找一个类或是一个接口的二进制形式并用该二进制形式来构造代表这个类或是这个接口的class对象的过程. Java中类装载器装载类到虚拟机 在Java中,类装载器把一个类装入Ja ...