题目链接:Click here

Solution:

我们设\(f[l][r][x][y]\)表示在原区间\(l\sim r\) 内还未被取走的值最大为\(x\)最小为\(y\)时的代价,这里我们只考虑区间\(l \sim r\)

我们再用\(g[l][r]\)表示将原区间$l\sim r $里的数全部取完的最小代价,则易得转移式

\[f[l][r][min(x,a[r])][max(y,a[x])]=min(f[l][r][min(x,a[r])][max(y,a[x])],f[l][r-1][x][y])\\
f[l][r][x][y]=min(f[l][r][x][y],f[l][k][x][y]+g[k+1][r])
\]

其中第一个转移表示直接从区间\(l\sim r-1\)转移过来,因为\(r\)没被取走,所以只要更新取值区间就行了

第二个转移表示枚举一个\(k\),从\(k\)断开,\(k\)之后的全部取完,\(k\)之前的取值区间为\(x\,y\),最后的答案即为\(g[1][n]\)

Code:

#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,m,A,B,a[51],b[51];
int f[51][51][51][51],g[51][51];
int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;
}
signed main(){
n=read();A=read(),B=read();
memset(f,0x3f,sizeof(f));
memset(g,0x3f,sizeof(g));
for(int i=1;i<=n;i++) a[i]=read(),b[i]=a[i];
sort(b+1,b+n+1);m=unique(b+1,b+n+1)-b-1;
for(int i=1;i<=n;i++) a[i]=lower_bound(b+1,b+m+1,a[i])-b;
for(int i=1;i<=n;i++) f[i][i][a[i]][a[i]]=0,g[i][i]=A;
for(int len=1;len<=n;len++){
for(int l=1;l+len-1<=n;l++){
int r=l+len-1;
for(int x=1;x<=m;x++)
for(int y=x;y<=m;y++){
f[l][r][min(a[r],x)][max(a[r],y)]=min(f[l][r][min(a[r],x)][max(a[r],y)],f[l][r-1][x][y]);
for(int k=l;k<r;k++)
f[l][r][x][y]=min(f[l][r][x][y],f[l][k][x][y]+g[k+1][r]);
}
for(int x=1;x<=m;x++)
for(int y=x;y<=m;y++)
g[l][r]=min(g[l][r],f[l][r][x][y]+A+B*(b[y]-b[x])*(b[y]-b[x]));
}
}printf("%lld\n",g[1][n]);
return 0;
}

THUSC2016 成绩单的更多相关文章

  1. [BZOJ4897][THUSC2016]成绩单(DP)

    4897: [Thu Summer Camp2016]成绩单 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 220  Solved: 132[Subm ...

  2. BZOJ4897 THUSC2016成绩单(区间dp)

    拿走一个区间的代价只与最大最小值有关,并且如果最后一次拿走包含区间右端点的子序列一定不会使答案更劣,于是设f[i][j][x][y]为使i~j区间剩余最小值为x最大值为y且若有数剩余一定包含j的最小代 ...

  3. 【LOJ2292】[THUSC2016]成绩单(区间DP)

    题目 LOJ2292 分析 比较神奇的一个区间 DP ,我看了很多题解都没看懂,大约是我比较菜罢. 先明确一下题意:abcde 取完 c 后变成 abde ,可以取 bd 这样取 c 后新增的连续段. ...

  4. [LOJ2292] [THUSC2016] 成绩单

    题目链接 LOJ:https://loj.ac/problem/2292 洛谷:https://www.luogu.org/problemnew/show/P5336 Solution 区间\(\rm ...

  5. [THUSC2016]成绩单 [区间dp]

    简单区间dp. 考虑 \(f_{i,j,mn,mx}\)表示 \(i,j\) 区间的最大值为 \(mx\),最小值为 \(mn\) 的最小花费,\(g_{i,j}\) 为删掉 \([i,j]\) 的最 ...

  6. PKUSC2018训练日程(4.18~5.30)

    (总计:共66题) 4.18~4.25:19题 4.26~5.2:17题 5.3~5.9: 6题 5.10~5.16: 6题 5.17~5.23: 9题 5.24~5.30: 9题 4.18 [BZO ...

  7. 【THUSC2016】成绩单(bzoj4897)

    $f(i,j,x,y)$ 表示区间 $[i,j]$中,第 $j$ 个数在最后一次操作中才消去,最后一次操作的最大值为 $x$,最小值为 $y$ 时的最小代价: $g(i,j)$ 表示区间 $[i,j] ...

  8. vue初体验:实现一个增删查改成绩单

    前端变化层出不穷,去年NG火一片,今年react,vue火一片,ng硬着头皮看了几套教程,总被其中的概念绕晕,react是faceback出品,正在不断学习中,同时抽时间了解了vue,查看了vue官方 ...

  9. avalon实现一个简单的带增删改查的成绩单

    自从angular问世,一直就有去了解学习angular,一直想用angular去做一个项目,但无奈,大ng是国外产物,ng1.2版本就只兼容到IE8,1.3后的几个版本提升到IE9,据说NG2.0更 ...

随机推荐

  1. [转帖]国科微发布纯正国产SSD主控 龙芯IP内核,速度可达500MB/s

    国科微发布纯正国产SSD主控龙芯IP内核,速度可达500MB/s https://www.expreview.com/68071.html 自主内核 龙芯处理器. 2019.4. 在存储芯片领域,中国 ...

  2. 自然语言处理工具HanLP-N最短路径分词

    本篇给大家分享baiziyu 写的HanLP 中的N-最短路径分词.以为下分享的原文,部分地方有稍作修改,内容仅供大家学习交流! 首先说明在HanLP对外提供的接口中没有使用N-最短路径分词器的,作者 ...

  3. 什么是分布式关系型数据库服务 DRDS

    DRDS 产品简介 DRDS 是一款基于 MySQL 存储.采用分库分表技术进行水平扩展的分布式 OLTP 数据库服务产品,支持 RDS for MySQL 以及 POLARDB for MySQL, ...

  4. mybatis整体流程

    <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE configuration PUBLIC ...

  5. <<C++ Primer>> 第 6 章 函数

    术语表 第 6 章 函数 二义性调用(ambiguous call): 是一种编译时发生的错误,造成二义性调用的原因时在函数匹配时两个或多个函数提供的匹配一样好,编译器找不到唯一的最佳匹配.    实 ...

  6. MFC多线程的创建使用

    最近学习了MFC多线程的使用, 写了一个继承CWinThread类的类MyThread: 在头文件开头用#define定义一个线程函数入口地址(会在下面定义代码中写出) 在类的开头加上IMPLEMEN ...

  7. springMvc接受单个文件,多个文件,多组文件

    web端 <form id="iconForm" enctype="multipart/form-data"></form> JS:通过 ...

  8. SQL学习(三)之子句和函数

    函数 COUNT()/计数.MIN()/最小值.MAX()/最大值.AVG()/平均值.SUM()/和 子句 子句是语句的一部分包括WHERE.GROUP.ORDER.LIMIT WHERE:条件 G ...

  9. 前端页面多级联动传输数据类型问题(数组or字符串)后端处理

    在最近的工作中,遇到一个问题,个人所做的简历模块中有两个字段,分别是个人信息中的户口所在地和现居住城市. 前端界面中这两个选项框是用到了二级和三级联动,在向后端传输时希望可以通过数组类型进行传输,例如 ...

  10. Centos7:zookeeper安装,配置与使用

    配置jdk环境 解压缩zookeeper的压缩包 配置 创建data目录 复制zoo_sample.cfg为zoo.cfg 修改confg/zoo.cfg中dataDir=**/data 常用命令 . ...