THUSC2016 成绩单
题目链接:Click here
Solution:
我们设\(f[l][r][x][y]\)表示在原区间\(l\sim r\) 内还未被取走的值最大为\(x\)最小为\(y\)时的代价,这里我们只考虑区间\(l \sim r\)
我们再用\(g[l][r]\)表示将原区间$l\sim r $里的数全部取完的最小代价,则易得转移式
f[l][r][x][y]=min(f[l][r][x][y],f[l][k][x][y]+g[k+1][r])
\]
其中第一个转移表示直接从区间\(l\sim r-1\)转移过来,因为\(r\)没被取走,所以只要更新取值区间就行了
第二个转移表示枚举一个\(k\),从\(k\)断开,\(k\)之后的全部取完,\(k\)之前的取值区间为\(x\,y\),最后的答案即为\(g[1][n]\)
Code:
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,m,A,B,a[51],b[51];
int f[51][51][51][51],g[51][51];
int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;
}
signed main(){
n=read();A=read(),B=read();
memset(f,0x3f,sizeof(f));
memset(g,0x3f,sizeof(g));
for(int i=1;i<=n;i++) a[i]=read(),b[i]=a[i];
sort(b+1,b+n+1);m=unique(b+1,b+n+1)-b-1;
for(int i=1;i<=n;i++) a[i]=lower_bound(b+1,b+m+1,a[i])-b;
for(int i=1;i<=n;i++) f[i][i][a[i]][a[i]]=0,g[i][i]=A;
for(int len=1;len<=n;len++){
for(int l=1;l+len-1<=n;l++){
int r=l+len-1;
for(int x=1;x<=m;x++)
for(int y=x;y<=m;y++){
f[l][r][min(a[r],x)][max(a[r],y)]=min(f[l][r][min(a[r],x)][max(a[r],y)],f[l][r-1][x][y]);
for(int k=l;k<r;k++)
f[l][r][x][y]=min(f[l][r][x][y],f[l][k][x][y]+g[k+1][r]);
}
for(int x=1;x<=m;x++)
for(int y=x;y<=m;y++)
g[l][r]=min(g[l][r],f[l][r][x][y]+A+B*(b[y]-b[x])*(b[y]-b[x]));
}
}printf("%lld\n",g[1][n]);
return 0;
}
THUSC2016 成绩单的更多相关文章
- [BZOJ4897][THUSC2016]成绩单(DP)
4897: [Thu Summer Camp2016]成绩单 Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 220 Solved: 132[Subm ...
- BZOJ4897 THUSC2016成绩单(区间dp)
拿走一个区间的代价只与最大最小值有关,并且如果最后一次拿走包含区间右端点的子序列一定不会使答案更劣,于是设f[i][j][x][y]为使i~j区间剩余最小值为x最大值为y且若有数剩余一定包含j的最小代 ...
- 【LOJ2292】[THUSC2016]成绩单(区间DP)
题目 LOJ2292 分析 比较神奇的一个区间 DP ,我看了很多题解都没看懂,大约是我比较菜罢. 先明确一下题意:abcde 取完 c 后变成 abde ,可以取 bd 这样取 c 后新增的连续段. ...
- [LOJ2292] [THUSC2016] 成绩单
题目链接 LOJ:https://loj.ac/problem/2292 洛谷:https://www.luogu.org/problemnew/show/P5336 Solution 区间\(\rm ...
- [THUSC2016]成绩单 [区间dp]
简单区间dp. 考虑 \(f_{i,j,mn,mx}\)表示 \(i,j\) 区间的最大值为 \(mx\),最小值为 \(mn\) 的最小花费,\(g_{i,j}\) 为删掉 \([i,j]\) 的最 ...
- PKUSC2018训练日程(4.18~5.30)
(总计:共66题) 4.18~4.25:19题 4.26~5.2:17题 5.3~5.9: 6题 5.10~5.16: 6题 5.17~5.23: 9题 5.24~5.30: 9题 4.18 [BZO ...
- 【THUSC2016】成绩单(bzoj4897)
$f(i,j,x,y)$ 表示区间 $[i,j]$中,第 $j$ 个数在最后一次操作中才消去,最后一次操作的最大值为 $x$,最小值为 $y$ 时的最小代价: $g(i,j)$ 表示区间 $[i,j] ...
- vue初体验:实现一个增删查改成绩单
前端变化层出不穷,去年NG火一片,今年react,vue火一片,ng硬着头皮看了几套教程,总被其中的概念绕晕,react是faceback出品,正在不断学习中,同时抽时间了解了vue,查看了vue官方 ...
- avalon实现一个简单的带增删改查的成绩单
自从angular问世,一直就有去了解学习angular,一直想用angular去做一个项目,但无奈,大ng是国外产物,ng1.2版本就只兼容到IE8,1.3后的几个版本提升到IE9,据说NG2.0更 ...
随机推荐
- IDEA2018.2.6激活(可用)
破解插件下载: 链接:https://pan.baidu.com/s/1j2_kEm_Akcph6Qb8hr6soQ 提取码:hv64 将下载包放入bin文件夹下,修改bin中的两个文件 idea.e ...
- SpringBoot中使用Websocket进行消息推送
WebsocketConfig.java @Configuration public class WebSocketConfig { @Bean public ServerEndpointExport ...
- [Next] 四.在next中引入redux
添加 redux 写过 react 稍微复杂一些应用的话,应该都对 redux(mobx)有一定的了解.这次将 redux 引入到项目中 因为之前写项目的习惯,更喜欢使用 redux-thunk 改写 ...
- [Next] next中文文档
Next.js 是一个轻量级的 React 服务端渲染应用框架. 怎么使用 安装 在项目文件夹中运行: npm install --save next react react-dom 将下面脚本添加到 ...
- JS基础_标识符
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 01 初识HTML
HTML是什么? 超文本标记语言(Hypertext Markup Language, HTML)是一种用于创建网页的标记语言. 本质上是浏览器可识别的规则,我们按照规则写网页,浏览器根据规则渲染我们 ...
- js截取字符串相关的知识点
截取字符串中的数字 1.使用parseInt() var str ="4500元"; var num = parseInt(str); console.log(num);//450 ...
- 基于DIGI WR21的PLC数据采集
通过路由器,使用python脚本读取数据,转发到后台golang数据采集平台,数据采集平台通过数据清洗,然后把数据清洗成标准数据,通过gRpc传输到分析平台.后期会写一点golang 基于grpc的微 ...
- Java语言基础(6)
1 while循环 案例:Demo1 1+2+3+4+5+...+100 = ? 首先定义一个变量sum,用来保存累加之和,int sum=0 第1次:sum = sum + 1 第2次: sum = ...
- uestc summer training #1
A 一个很好想的dp ll dp[maxn][]; int main() { scanf("%d%d",&n,&k); memset(dp,,sizeof(dp)) ...