THUSC2016 成绩单
题目链接:Click here
Solution:
我们设\(f[l][r][x][y]\)表示在原区间\(l\sim r\) 内还未被取走的值最大为\(x\)最小为\(y\)时的代价,这里我们只考虑区间\(l \sim r\)
我们再用\(g[l][r]\)表示将原区间$l\sim r $里的数全部取完的最小代价,则易得转移式
f[l][r][x][y]=min(f[l][r][x][y],f[l][k][x][y]+g[k+1][r])
\]
其中第一个转移表示直接从区间\(l\sim r-1\)转移过来,因为\(r\)没被取走,所以只要更新取值区间就行了
第二个转移表示枚举一个\(k\),从\(k\)断开,\(k\)之后的全部取完,\(k\)之前的取值区间为\(x\,y\),最后的答案即为\(g[1][n]\)
Code:
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,m,A,B,a[51],b[51];
int f[51][51][51][51],g[51][51];
int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;
}
signed main(){
n=read();A=read(),B=read();
memset(f,0x3f,sizeof(f));
memset(g,0x3f,sizeof(g));
for(int i=1;i<=n;i++) a[i]=read(),b[i]=a[i];
sort(b+1,b+n+1);m=unique(b+1,b+n+1)-b-1;
for(int i=1;i<=n;i++) a[i]=lower_bound(b+1,b+m+1,a[i])-b;
for(int i=1;i<=n;i++) f[i][i][a[i]][a[i]]=0,g[i][i]=A;
for(int len=1;len<=n;len++){
for(int l=1;l+len-1<=n;l++){
int r=l+len-1;
for(int x=1;x<=m;x++)
for(int y=x;y<=m;y++){
f[l][r][min(a[r],x)][max(a[r],y)]=min(f[l][r][min(a[r],x)][max(a[r],y)],f[l][r-1][x][y]);
for(int k=l;k<r;k++)
f[l][r][x][y]=min(f[l][r][x][y],f[l][k][x][y]+g[k+1][r]);
}
for(int x=1;x<=m;x++)
for(int y=x;y<=m;y++)
g[l][r]=min(g[l][r],f[l][r][x][y]+A+B*(b[y]-b[x])*(b[y]-b[x]));
}
}printf("%lld\n",g[1][n]);
return 0;
}
THUSC2016 成绩单的更多相关文章
- [BZOJ4897][THUSC2016]成绩单(DP)
4897: [Thu Summer Camp2016]成绩单 Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 220 Solved: 132[Subm ...
- BZOJ4897 THUSC2016成绩单(区间dp)
拿走一个区间的代价只与最大最小值有关,并且如果最后一次拿走包含区间右端点的子序列一定不会使答案更劣,于是设f[i][j][x][y]为使i~j区间剩余最小值为x最大值为y且若有数剩余一定包含j的最小代 ...
- 【LOJ2292】[THUSC2016]成绩单(区间DP)
题目 LOJ2292 分析 比较神奇的一个区间 DP ,我看了很多题解都没看懂,大约是我比较菜罢. 先明确一下题意:abcde 取完 c 后变成 abde ,可以取 bd 这样取 c 后新增的连续段. ...
- [LOJ2292] [THUSC2016] 成绩单
题目链接 LOJ:https://loj.ac/problem/2292 洛谷:https://www.luogu.org/problemnew/show/P5336 Solution 区间\(\rm ...
- [THUSC2016]成绩单 [区间dp]
简单区间dp. 考虑 \(f_{i,j,mn,mx}\)表示 \(i,j\) 区间的最大值为 \(mx\),最小值为 \(mn\) 的最小花费,\(g_{i,j}\) 为删掉 \([i,j]\) 的最 ...
- PKUSC2018训练日程(4.18~5.30)
(总计:共66题) 4.18~4.25:19题 4.26~5.2:17题 5.3~5.9: 6题 5.10~5.16: 6题 5.17~5.23: 9题 5.24~5.30: 9题 4.18 [BZO ...
- 【THUSC2016】成绩单(bzoj4897)
$f(i,j,x,y)$ 表示区间 $[i,j]$中,第 $j$ 个数在最后一次操作中才消去,最后一次操作的最大值为 $x$,最小值为 $y$ 时的最小代价: $g(i,j)$ 表示区间 $[i,j] ...
- vue初体验:实现一个增删查改成绩单
前端变化层出不穷,去年NG火一片,今年react,vue火一片,ng硬着头皮看了几套教程,总被其中的概念绕晕,react是faceback出品,正在不断学习中,同时抽时间了解了vue,查看了vue官方 ...
- avalon实现一个简单的带增删改查的成绩单
自从angular问世,一直就有去了解学习angular,一直想用angular去做一个项目,但无奈,大ng是国外产物,ng1.2版本就只兼容到IE8,1.3后的几个版本提升到IE9,据说NG2.0更 ...
随机推荐
- MySQL Explain命令详解--表的读取顺序,数据读取操作的类型等
表示索引中使用的字节数,可通过该列计算查询中使用的索引的长度(key_len显示的值为索引字段的最大可能长度,并非实际使用长度,即key_len是根据表定义计算而得,不是通过表内检索出的) 不损失精确 ...
- MY TESTS
励志整理所有的n次考试的博客: [五一qbxt]test1 [五一qbxt]test2 [校内test]桶哥的问题 [6.10校内test] noip模拟 6.12校内test [6.12校内test ...
- Django发送邮件和itsdangerous模块的配合使用
项目需求:用户注册页面注册之后,系统会发送一封邮件到用户邮箱,用户点击链接以激活账户,其中链接中的用户信息需要加密处理一下 其中激活自己邮箱的smtp服务的操作就不在加以说明,菜鸟教程上有非常清晰的讲 ...
- linux 三剑客之sed常用总结
sed 列出5-7行 [root@www ~]# nl /etc/passwd | sed -n '5,7p' -n不在处理前打印,搜索root,/p打印 nl /etc/passwd | sed ' ...
- Sigma (化简)牛客多校第一场 -- Integration
思路: 可以裂项化简,类似找规律,可以两项.三项代进去试试看. #define IOS ios_base::sync_with_stdio(0); cin.tie(0); #include <c ...
- Postman之前言
Postman是一款流行的接口api调试/测试工具.几乎可以发送大多数的HTTP请求. 1.依据开发提供的接口文档,对接口进行测试. 2.如果是自己学习,可以网上找一些免费的接口进行学习,或者抓包 - ...
- Adam作者大革新, 联合Hinton等人推出全新优化方法Lookahead
Adam作者大革新, 联合Hinton等人推出全新优化方法Lookahead 参与:思源.路.泽南 快来试试 Lookahead 最优化方法啊,调参少.收敛好.速度还快,大牛用了都说好. 最优化方 ...
- Collection接口的子接口——Queue接口
https://docs.oracle.com/javase/8/docs/api/java/util/Queue.html public interface Queue<E> exten ...
- leecode刷题(31) -- 回文数
leecode刷题(31) -- 回文数 回文数 判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121 输出: true 示例 2: 输 ...
- 三、redis学习(jedis连接池)
一.jedis连接池 二.jedis连接池+config配置文件 三.jedis连接池+config配置文件+util工具类 util类 public class JedisPoolUtils { / ...