在0-1中提到了,当最终output的p=0时,这个时候模型无法正常使用,为了解决这个问题,在0-4中会有所提及。

在本节中,其实,计算概率的时候,我们应该假设某一个位置的词与它前面的所有词都是相关的,但是,如果我们这样计算的话,可以计算出来,计算量是相当大的。例如在p(x1,x2,x3…xn)中,x是集合V中的一个单词,假设v的大小为|v|,也就是说(x1,x2…xn)就一共有|v|的n次方中可能。提出了马尔可夫过程来解决。在计算P的时候,实际上我们给出了一个独立性假设,这个独立性假设就是说所有的随机变量只于它前面的随机变量条件相关。

其实不难理解:

  • 假设,有一串随机的变量X1,X2,…XN.(a sequence of random variables)
  • 每一个变量可以设置成任何值,并且这些值来自于有限的集合V。(each random variable can take any value in a finite set V)
  • 目前,我们把N的值设置成定值。(for now we assume the lenght n is fixed)

我们的目标是计算:

P(X1=x1,X2=x2,X3=x3…Xn=xn)也就是计算0-1中提到的p(x1,x2,x3…xn)

第一种计算P的方法是First-Order Markov Processes,一阶马尔可夫过程

现在来解释一下这个公式:

其实,计算概率的时候,我们应该假设某一个位置的词与它前面的所有词都是相关的,但是,如果我们这样计算的话,可以计算出来,计算量是相当大的。例如在p(x1,x2,x3…xn)中,x是集合V中的一个单词,假设v的大小为|v|,也就是说(x1,x2…xn)就一共有|v|的n次方中可能。

所以,为了简化问题,在一阶马尔可夫过程中,我们只假设当前的词至于前面的一个单词相关,所以得到了上图中的公式。

也就是说,在一阶马尔可夫过程中:

for any i属于{2….n},for any x1,x2…xi

P(Xi=xi|X1=x1…Xi-1=xi)=P(Xi=xi|Xi-1=xi-1)

那么,同理,我们也可以假设当前的单词,至于前面的两个单词相关,这样,就出现了二阶马尔可夫过程。

Second-Order Markov Processes

为了表示方便,引入了*来代表x0,x-1

如果上面的公式推导看着比较费劲,那么需要补充一下概率知识,建议阅读相关资料。这里稍微普及一下:

例如:

p(a,b)=p(a)*p(b|a)

p(a,b,c)=p(a)*p(b|a)*p(c|a,b)

在一些英文文献中p(b|a)有的时候被写作conditional probability of p of b given a.

在这一节中,我们把n的值设置成了定值,在下一节中,将会讨论,n的值可变的时候怎么办。

0-2马尔可夫过程Markov Processes的更多相关文章

  1. Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫。 马尔可夫链,的原理attilax总结

    Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫. 马尔可夫链,的原理attilax总结 1. 马尔可夫过程1 1.1. 马尔科夫的应用 生成一篇"看起来像文章的 ...

  2. 强化学习二:Markov Processes

    一.前言 在第一章强化学习简介中,我们提到强化学习过程可以看做一系列的state.reward.action的组合.本章我们将要介绍马尔科夫决策过程(Markov Decision Processes ...

  3. Spring Boot 2.0 整合携程Apollo配置中心

    原文:https://www.jianshu.com/p/23d695af7e80 Apollo(阿波罗)是携程框架部门研发的分布式配置中心,能够集中化管理应用不同环境.不同集群的配置,配置修改后能够 ...

  4. David Silver强化学习Lecture2:马尔可夫决策过程

    课件:Lecture 2: Markov Decision Processes 视频:David Silver深度强化学习第2课 - 简介 (中文字幕) 马尔可夫过程 马尔可夫决策过程简介 马尔可夫决 ...

  5. 转:隐马尔可夫模型(HMM)攻略

    隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价 ...

  6. 算法系列:HMM

    隐马尔可夫(HMM)好讲,简单易懂不好讲. 用最经典的例子,掷骰子.假设我手里有三个不同的骰子.第一个骰子是我们平常见的骰子(称这个骰子为D6),6个面,每个面(1,2,3,4,5,6)出现的概率是1 ...

  7. 隐马尔可夫模型(HMM)

    转自:http://blog.csdn.net/likelet/article/details/7056068 隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. ...

  8. 隐马尔可夫模型(HMM)攻略

    隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价 ...

  9. 隐马尔可夫模型(HMM)

    隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价 ...

随机推荐

  1. jsqlparser

    摘要:SQL语法解释器jsqlparser 是用java开发的解析器,可以生成java类层次结构. 主页地址:http://jsqlparser.sourceforge.net 可以完美解析表的增删查 ...

  2. ECharts t图表组件使用心得

    1.使用较多的是“柱状图”和“折线图”: 2.数据列的展示不能够直接输入字符串,正确的做法是将字符串转换成数字类型,这样在生成的图表上才会显示最大值和最小值: 3.对上 1 点的补充,数据列应该使用数 ...

  3. codeforces 617 E. XOR and Favorite Number(莫队算法)

    题目链接:http://codeforces.com/problemset/problem/617/E 题目: 给你a1 a2 a3 ··· an 个数,m次询问:在[L, R] 里面又多少中 [l, ...

  4. 生产环境下,oracle不同用户间的数据迁移。第一部分

    :任务名称:生产环境下schema ELON数据迁移至schema TIAN ######################################## 测试一:测试参数 数据泵数据导出:exp ...

  5. centos7 安装gdal2.3.1

    在直接源码安装gdal2.3时报错,大概意思是说没有安装SFCGAL. 1.centos更新cmake到3.5版本: wget https://cmake.org/files/v3.5/cmake-3 ...

  6. 常见的网络设备:集线器 hub、网桥、交换机 switch、路由器 router、网关 gateway

    Repeater 中继器 Hub 集线器 bridge 网桥 switch 交换机 router 路由器 gateway 网关 网卡 参考资料: do-you-know-the-differences ...

  7. Pikachu漏洞练习平台实验——不安全的文件下载和上传(七)

    1.不安全的文件下载 1.1.概述 文件下载功能在很多web系统上都会出现,一般我们当点击下载链接,便会向后台发送一个下载请求,一般这个请求会包含一个需要下载的文件名称,后台在收到请求后 会开始执行下 ...

  8. 异步请求jquery action

    package com.tarena.action; import java.util.HashMap;import java.util.Map; import javax.annotation.Re ...

  9. Go语言格式化字符串

    %s: 普通字符串 %q: 引号包含字符串 %x, %o, %b: 十六进制,8进制,2进制 %t: bool值 %d decimal integer %v any value in a natura ...

  10. tab区域折叠

    <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>co ...