0-2马尔可夫过程Markov Processes
在0-1中提到了,当最终output的p=0时,这个时候模型无法正常使用,为了解决这个问题,在0-4中会有所提及。
在本节中,其实,计算概率的时候,我们应该假设某一个位置的词与它前面的所有词都是相关的,但是,如果我们这样计算的话,可以计算出来,计算量是相当大的。例如在p(x1,x2,x3…xn)中,x是集合V中的一个单词,假设v的大小为|v|,也就是说(x1,x2…xn)就一共有|v|的n次方中可能。提出了马尔可夫过程来解决。在计算P的时候,实际上我们给出了一个独立性假设,这个独立性假设就是说所有的随机变量只于它前面的随机变量条件相关。
其实不难理解:
- 假设,有一串随机的变量X1,X2,…XN.(a sequence of random variables)
- 每一个变量可以设置成任何值,并且这些值来自于有限的集合V。(each random variable can take any value in a finite set V)
- 目前,我们把N的值设置成定值。(for now we assume the lenght n is fixed)
我们的目标是计算:
P(X1=x1,X2=x2,X3=x3…Xn=xn)也就是计算0-1中提到的p(x1,x2,x3…xn)
第一种计算P的方法是First-Order Markov Processes,一阶马尔可夫过程

现在来解释一下这个公式:
其实,计算概率的时候,我们应该假设某一个位置的词与它前面的所有词都是相关的,但是,如果我们这样计算的话,可以计算出来,计算量是相当大的。例如在p(x1,x2,x3…xn)中,x是集合V中的一个单词,假设v的大小为|v|,也就是说(x1,x2…xn)就一共有|v|的n次方中可能。
所以,为了简化问题,在一阶马尔可夫过程中,我们只假设当前的词至于前面的一个单词相关,所以得到了上图中的公式。
也就是说,在一阶马尔可夫过程中:
for any i属于{2….n},for any x1,x2…xi
P(Xi=xi|X1=x1…Xi-1=xi)=P(Xi=xi|Xi-1=xi-1)
那么,同理,我们也可以假设当前的单词,至于前面的两个单词相关,这样,就出现了二阶马尔可夫过程。
Second-Order Markov Processes

为了表示方便,引入了*来代表x0,x-1
如果上面的公式推导看着比较费劲,那么需要补充一下概率知识,建议阅读相关资料。这里稍微普及一下:
例如:
p(a,b)=p(a)*p(b|a)
p(a,b,c)=p(a)*p(b|a)*p(c|a,b)
在一些英文文献中p(b|a)有的时候被写作conditional probability of p of b given a.
在这一节中,我们把n的值设置成了定值,在下一节中,将会讨论,n的值可变的时候怎么办。
0-2马尔可夫过程Markov Processes的更多相关文章
- Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫。 马尔可夫链,的原理attilax总结
Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫. 马尔可夫链,的原理attilax总结 1. 马尔可夫过程1 1.1. 马尔科夫的应用 生成一篇"看起来像文章的 ...
- 强化学习二:Markov Processes
一.前言 在第一章强化学习简介中,我们提到强化学习过程可以看做一系列的state.reward.action的组合.本章我们将要介绍马尔科夫决策过程(Markov Decision Processes ...
- Spring Boot 2.0 整合携程Apollo配置中心
原文:https://www.jianshu.com/p/23d695af7e80 Apollo(阿波罗)是携程框架部门研发的分布式配置中心,能够集中化管理应用不同环境.不同集群的配置,配置修改后能够 ...
- David Silver强化学习Lecture2:马尔可夫决策过程
课件:Lecture 2: Markov Decision Processes 视频:David Silver深度强化学习第2课 - 简介 (中文字幕) 马尔可夫过程 马尔可夫决策过程简介 马尔可夫决 ...
- 转:隐马尔可夫模型(HMM)攻略
隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价 ...
- 算法系列:HMM
隐马尔可夫(HMM)好讲,简单易懂不好讲. 用最经典的例子,掷骰子.假设我手里有三个不同的骰子.第一个骰子是我们平常见的骰子(称这个骰子为D6),6个面,每个面(1,2,3,4,5,6)出现的概率是1 ...
- 隐马尔可夫模型(HMM)
转自:http://blog.csdn.net/likelet/article/details/7056068 隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. ...
- 隐马尔可夫模型(HMM)攻略
隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价 ...
- 隐马尔可夫模型(HMM)
隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价 ...
随机推荐
- 1208D Restore Permutation
题目大意 给你一个序列s 让你求一个1~n的序列 使得对于第i个位置它前面所有小于p[i]的数的和恰好为s[i] 分析 我们可以从后往前确定每一位 每次一二分找到恰好等于s[i]的数 但是我们发现这样 ...
- php+form表单的文件上传
<!doctype html> <html> <head> <meta charset="UTF-8"> <title> ...
- 【Unity系统知识】之unity文件操作路径
IOS:Application.dataPath : Application/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx/xxx ...
- UI自动化通过文字、父子元素,兄弟元素定位
在百度首页,通过文字,父子元素,兄弟元素进行定位 一.文字定位: 通过界面上的文字进行定位,注意如果同一个页面上存在多个同样的文字的情况,返回的值会是多个,建议只存在一个情况下才用这方法. 如:定位百 ...
- deepFreeze
obj1 = { internal: {} }; Object.freeze(obj1); obj1.internal.a = 'aValue'; obj1.internal.a // 'aVal ...
- Go语言格式化字符串
%s: 普通字符串 %q: 引号包含字符串 %x, %o, %b: 十六进制,8进制,2进制 %t: bool值 %d decimal integer %v any value in a natura ...
- golang的数据类型之整型类型
数据类型: 整数 : int, int32, int64, uint, uint32, uint64 字符串 : string 布尔:bool 浮点:float32 float64 uint 表示无符 ...
- 0x3f3f3f3f 0xbfbfbfbf 等的原理及应用
原理 0x的意思其实是十六进制,后面加的数其实就是一个十六进制数. 在十六进制中,我们知道a代表10,b代表11,c代表12,d代表13,e代表14,f代表15. 所以3f3f3f3f这个数用十进制数 ...
- 06 CAS的原理和AQS
CAS的原理 CAS(compareAndSwap),比较交换,是一种无锁的原子算法. Cas(value,expect,newValue),如果vaule和ecpect一样,就更新为newValue ...
- 【java】jstack分析查看线程状态
演示代码 public class StackTest { public static void main(String[] args) { Thread thread = new Thread(ne ...