[洛谷 P1013] NOIP1998 提高组 进制位
问题描述
著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字。 例如:
L K V E
L L K V E
K K V E KL
V V E KL KK
E E KL KK KV
其含义为:
L+L=L,L+K=K,L+V=V,L+E=E
K+L=K,K+K=V,K+V=E,K+E=KL
…… E+E=KV
根据这些规则可推导出:L=0,K=1,V=2,E=3,同时可以确定该表表示的是4进制加法
输入格式
n(n≤9)表示行数。
以下n行,每行包括n个字符串,每个字串间用空格隔开。(字串仅有一个为‘+’号,其它都由大写字母组成)
输出格式
① 各个字母表示什么数,格式如:L=0,K=1,……按给出的字母顺序。
② 加法运算是几进制的。
③ 若不可能组成加法表,则应输出“ERROR!”
样例输入
5
L K V E
L L K V E
K K V E KL
V V E KL KK
E E KL KK KV
样例输出
L=0 K=1 V=2 E=3
4
解析
看到这道题时,有没有想到搜索?然后就是一通码......然后过了。
但是,真的要用搜索吗?
我们可以观察一下。对于n进制中的数\(i\),如果\(i\)加上某一个数\(j\)会变成两位数,那么可以得到如下不等式:
\]
而满足要求的\(j\)的个数有\(n-1-(n-1-i)=i\)个。由此我们可以得到结论,一个字母的值就是这个字母对应的行中两位数的个数。我们所需要做的只是验证是否正确。那么怎样验证呢?最直接的办法是直接往里面代,但能否用另外的方法将每个字母的值算出呢?
这个比较难想。对于一个数\(i\),如果想要\(j+k\)的个位数为\(i\),必须满足\(i<k<n\)。那么,假设满足条件的\(k\)有\(a[i]\)个,\(i\)的值就是\(n-1-a[i]\)。\(a[i]\)只用求一个字母在两位数的个位上出现的次数即可。
另外,如果一个数在同一行中出现了两次,显然也是不对的,直接结束即可。
在下面的代码中,因为行数是\(n\),所以其实是\(n-1\)进制的加法。
代码
#include <iostream>
#include <cstdio>
#include <string>
#define N 10
using namespace std;
int n,i,j,a[N],num[30];
char l[N];
int main()
{
cin>>n;
for(i=0;i<n;i++){
char c;
cin>>c;
if(c!='+') l[i]=c;
}
for(i=2;i<=n;i++){
string s1,s;
for(j=1;j<=n;j++){
cin>>s;
if(j==1) continue;
if(j!=2&&s==s1){
cout<<"ERROR!"<<endl;
return 0;
}
s1=s;
if(i!=1&&j!=-1){
int l=s.length();
if(l==2){
a[i-1]++;
num[(int)s[l-1]]++;
}
}
}
}
for(i=1;i<n;i++){
if(a[i]!=n-2-num[(int)l[i]]){
cout<<"ERROR!"<<endl;
return 0;
}
}
for(i=1;i<n;i++){
cout<<l[i]<<"="<<a[i]<<' ';
}
cout<<endl<<n-1<<endl;
return 0;
}
[洛谷 P1013] NOIP1998 提高组 进制位的更多相关文章
- P1013 [NOIP1998 提高组] 进制位
解析 看到这道题时,有没有想到搜索?然后就是一通码......然后过了. 但是,真的要用搜索吗? 我们可以观察一下.对于n进制中的数ii,如果ii加上某一个数jj会变成两位数,那么可以得到如下不等式: ...
- 【洛谷p1066】2^k进制数
(不会敲键盘惹qwq) 2^k进制数[传送门] 算法标签: (又是一个提高+省选-的题) 如果我说我没听懂你信吗 代码qwq: #include<iostream> #include< ...
- 洛谷 P2678 & [NOIP2015提高组] 跳石头
题目链接 https://www.luogu.org/problemnew/show/P2678 题目背景 一年一度的“跳石头”比赛又要开始了! 题目描述 这项比赛将在一条笔直的河道中进行,河道中分布 ...
- 【题解】洛谷P1066 [NOIP2006TG] 2^k进制数(复杂高精+组合推导)
洛谷P1066:https://www.luogu.org/problemnew/show/P1066 思路 挺难的一道题 也很复杂 满足题目要求的种数是两类组合数之和 r的最多位数m为 w/k(当w ...
- 洛谷 题解 P1604 【B进制星球】
题目:P1604 B进制星球 本人提交记录:R6292872 作为一个极其无聊的人,我没事干地写了operator... 思路很简单: 读入b 读入b进制的x,y ans = x + y 输出ans ...
- 洛谷 P1025 & [NOIP2001提高组] 数的划分(搜索剪枝)
题目链接 https://www.luogu.org/problemnew/show/P1025 解题思路 一道简单的dfs题,但是需要剪枝,否则会TLE. 我们用dfs(a,u,num)来表示上一个 ...
- 洛谷P1514 [NOIP2010提高组T4]引水入城
P1514 引水入城 题目描述 在一个遥远的国度,一侧是风景秀美的湖泊,另一侧则是漫无边际的沙漠.该国的行政区划十分特殊,刚好构成一个N 行M 列的矩形,如上图所示,其中每个格子都代表一座城市,每座城 ...
- 洛谷P1084 [NOIP2012提高组Day2T3]疫情控制
P1084 疫情控制 题目描述 H 国有 n 个城市,这 n 个城市用 n-1 条双向道路相互连通构成一棵树,1 号城市是首都,也是树中的根节点. H 国的首都爆发了一种危害性极高的传染病.当局为了控 ...
- 洛谷P1083 [NOIP2012提高组Day2T2]借教室
P1083 借教室 题目描述 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室.教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样. 面对海量租借 ...
随机推荐
- 线性代数之——SVD 分解
SVD 分解是线性代数的一大亮点. 1. SVD 分解 \(A\) 是任意的 \(m×n\) 矩阵,它的秩为 \(r\),我们要对其进行对角化,但不是通过 \(S^{-1}A S\).\(S\) 中的 ...
- 文件格式-CVS:CVS
ylbtech-文件格式-CVS:CVS 逗号分隔值(Comma-Separated Values,CSV,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文 ...
- Codeforces Round #573
http://codeforces.com/contest/1191 A 给一个数,可以加0,1或2然后取模,再映射到字母,字母有排名,求最大排名. 总共只有4种情况,讨论即可 #include< ...
- Centos7最小安装化后安装图形界面
首先需要对系统进行更新 yum -y upgrade 然后安装桌面组件包 ,在命令行下输入下面的命令来安装 Gnome 包 yum groupinstall "GNOME Desktop&q ...
- clientdataset 做为 单机数据库的 使用 学习
http://blog.csdn.net/waveyang/article/details/34146737 unit Unit3; interface uses Winapi.Windows, Wi ...
- Android在WindowManagerService和ActivityManagerService中的Token
https://upload-images.jianshu.io/upload_images/5688445-6cf0575bb52ccb45.png 1. ActivityRecord中的token ...
- BZOJ1185[HNOI2007] 最小矩形覆盖(旋转卡壳)
BZOJ1185[HNOI2007] 最小矩形覆盖 题面 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,输出所求矩形的面积和四个顶点的坐标 分析 首先可以先求凸包,因为覆盖了凸包上的顶点,凸 ...
- 16、前端知识点--Object.defineProperty 的用法+双向数据绑定原理解析
一.Object.defineProperty 的用法 Object.defineProperty 可以用于给对象添加更新属性. <script> // Object.defineProp ...
- vue - 过滤器filter的基本使用
1.全局过滤器 输出: 过滤器可以多次来调用 输出: 2.私有过滤器 <!DOCTYPE html> <html lang="en"> <head&g ...
- ES6——generator
generator 生成器函数 普通函数,一路到底 generator函数,中间可以停,到哪停呢,用 yield 配合,交出执行权 yield 有 放弃.退让.退位的意思 需要调用next()方法启动 ...