题意:统计l-r中每种数字出现的次数

很明显的数位dp问题,虽然有更简洁的做法但某人已经习惯了数位dp的风格所以还是选择扬长避短吧(说白了就是菜啊)

从高位向低位走,设状态$(u,lim,ze)$表示当前走到了第几位,是否有上限,是否有前导零的状态,则问题转化成了求所有转移路径中经过的所有数字的数量统计问题。

设$f[u][lim][ze]$为从状态$(u,lim,ze)$向后走能到达的状态总数,$g[u][lim][ze][i]$为状态$(u,lim,ze)$及其向后走能到达的所有状态中数字$i$出现的总数,各种转移就行了,实现细节比较复杂就不啰嗦了~~

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=+,inf=0x3f3f3f3f;
int l,r,bit[N],nb,f[N][][],g[N][][][],vis[N][][],cnt[N],ka;
void dfs(int u,int lim,int ze) {
if(vis[u][lim][ze]==ka)return;
vis[u][lim][ze]=ka;
if(u==) {
f[u][lim][ze]=;
for(int i=; i<=; ++i)g[u][lim][ze][i]=;
return;
}
f[u][lim][ze]=;
for(int i=; i<=; ++i)g[u][lim][ze][i]=;
for(int i=; i<=(lim?bit[u]:); ++i) {
int lim2=(lim&&i==bit[u]),ze2=(ze&&i==);
dfs(u-,lim2,ze2);
f[u][lim][ze]+=f[u-][lim2][ze2];
if(!(ze&&i==))g[u][lim][ze][i]+=f[u-][lim2][ze2];
for(int j=; j<=; ++j)g[u][lim][ze][j]+=g[u-][lim2][ze2][j];
}
}
void solve(int x,int F) {
for(nb=; x; x/=)bit[++nb]=x%;
dfs(nb,,);
for(int i=; i<=; ++i)cnt[i]+=F*g[nb][][][i];
}
int main() {
while(scanf("%d%d",&l,&r)&&l) {
if(l>r)swap(l,r);
memset(cnt,,sizeof cnt);
++ka,solve(r,);
++ka,solve(l-,-);
for(int i=; i<=; ++i)printf("%d%c",cnt[i]," \n"[i==]);
}
return ;
}

UVA - 1640 The Counting Problem (数位dp)的更多相关文章

  1. UVA 1640 The Counting Problem UVA1640 求[a,b]或者[b,a]区间内0~9在里面各个数的数位上出现的总次数。

    /** 题目:UVA 1640 The Counting Problem UVA1640 链接:https://vjudge.net/problem/UVA-1640 题意:求[a,b]或者[b,a] ...

  2. 『The Counting Problem 数位dp』

    The Counting Problem Description 求 [L,R]内每个数码出现的次数. Input Format 若干行,一行两个正整数 L 和 R. 最后一行 L=R=0,表示输入结 ...

  3. UVA 1640 The Counting Problem

    https://vjudge.net/problem/UVA-1640 题意:统计区间[l,r]中0——9的出现次数 数位DP 注意删除前导0 #include<cmath> #inclu ...

  4. UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)

    题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...

  5. UVA 1640 The Counting Problem(按位dp)

    题意:给你整数a.b,问你[a,b]间每个数字分解成单个数字后,0.1.2.3.4.5.6.7.8.9,分别有多少个 题解:首先找到[0,b]与[0,a-1]进行区间减法,接着就只是求[0,x] 对于 ...

  6. UVa 1640 - The Counting Problem(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  7. POJ2282:The Counting Problem(数位DP)

    Description Given two integers a and b, we write the numbers between a and b, inclusive, in a list. ...

  8. UVa 1640 The Counting Problem (数学,区间计数)

    题意:给定两个数m, n,求从 m 到 n 中0-9数字各出现了多少次. 析:看起来挺简单的,其实并不好做,因为有容易想乱了.主要思路应该是这样的,分区间计数,先从个位进行计,一步一步的计算过来.都从 ...

  9. hdu 5106 Bits Problem(数位dp)

    题目链接:hdu 5106 Bits Problem 题目大意:给定n和r,要求算出[0,r)之间全部n-onebit数的和. 解题思路:数位dp,一个ct表示个数,dp表示和,然后就剩下普通的数位d ...

随机推荐

  1. Windows-T

    查看Windows系统版本号 同时按下Windows键和字母R键,然后输入winver就可以了 命令行运行计算器cmd-calc win10卸载XShell6报错1603 在运行里输入regedit打 ...

  2. Django-ORM外键属性总结

    ForeignKey ForeignKey(ForeignObject) # ForeignObject(RelatedField) to, # 要进行关联的表名 to_field=None, # 要 ...

  3. java位运算定义常量

    简单说一下位运算 按位与(&) 参加运算的两个数,换算为二进制(0.1)后,进行与运算.只有当相应位上的数都是1时,该位才取1,否则该为为0 按位或(|) 参加运算的两个数,换算为二进制(0. ...

  4. core python

    一:正则表达式 闭包操作符 | 等同于 or   exp:a|b|c           . 匹配任意一个字符 (若匹配本字符,需转义使用 \.   不能匹配换行符\n及空字符串)    (^:匹配首 ...

  5. 1 初识数据库操作 1 MySQL 数据库

    1 数据类型与表的管理 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库. 常见数据库:Oracle.DB2.SQL Server.Postgre SQL.MySQL. 1.1 相 ...

  6. Win7主题存放路径详解

    WIN7用户主题--- 自定义主题  首先当然是用户自定义的主题文件夹,这个文件夹一般是存放在下面这个路径(注意那个用户名改成你自己的登陆名喔,比如 administrator) C:\Users\用 ...

  7. STL vector常见用法详解

    <算法笔记>中摘取 vector常见用法详解 1. vector的定义 vector<typename> name; //typename可以是任何基本类型,例如int, do ...

  8. 01:keepalive高可用集群

    1.1 keepalived高可用软件介绍 1.keepalived--监控检查 注:keepalive软件有两种功能:监控检查.VRRP冗余协议 1. keepalive的作用是检测web服务器的状 ...

  9. VMware 无法开机

    无法打开磁盘 虚拟机无法打开磁盘 "或者某一个快照所依赖的磁盘 原因:未能锁定文件"的解决办法 很多人在使用虚拟机是都会遇到“无法打开磁盘" x:\*\*vmdk &qu ...

  10. 了解MyISAM与InnoDB的索引差异(转)

    出处原文: 1分钟了解MyISAM与InnoDB的索引差异 数据库的索引分为主键索引(Primary Inkex)与普通索引(Secondary Index).InnoDB和MyISAM是怎么利用B+ ...