UVA - 1640 The Counting Problem (数位dp)
题意:统计l-r中每种数字出现的次数
很明显的数位dp问题,虽然有更简洁的做法但某人已经习惯了数位dp的风格所以还是选择扬长避短吧(说白了就是菜啊)
从高位向低位走,设状态$(u,lim,ze)$表示当前走到了第几位,是否有上限,是否有前导零的状态,则问题转化成了求所有转移路径中经过的所有数字的数量统计问题。
设$f[u][lim][ze]$为从状态$(u,lim,ze)$向后走能到达的状态总数,$g[u][lim][ze][i]$为状态$(u,lim,ze)$及其向后走能到达的所有状态中数字$i$出现的总数,各种转移就行了,实现细节比较复杂就不啰嗦了~~
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=+,inf=0x3f3f3f3f;
int l,r,bit[N],nb,f[N][][],g[N][][][],vis[N][][],cnt[N],ka;
void dfs(int u,int lim,int ze) {
if(vis[u][lim][ze]==ka)return;
vis[u][lim][ze]=ka;
if(u==) {
f[u][lim][ze]=;
for(int i=; i<=; ++i)g[u][lim][ze][i]=;
return;
}
f[u][lim][ze]=;
for(int i=; i<=; ++i)g[u][lim][ze][i]=;
for(int i=; i<=(lim?bit[u]:); ++i) {
int lim2=(lim&&i==bit[u]),ze2=(ze&&i==);
dfs(u-,lim2,ze2);
f[u][lim][ze]+=f[u-][lim2][ze2];
if(!(ze&&i==))g[u][lim][ze][i]+=f[u-][lim2][ze2];
for(int j=; j<=; ++j)g[u][lim][ze][j]+=g[u-][lim2][ze2][j];
}
}
void solve(int x,int F) {
for(nb=; x; x/=)bit[++nb]=x%;
dfs(nb,,);
for(int i=; i<=; ++i)cnt[i]+=F*g[nb][][][i];
}
int main() {
while(scanf("%d%d",&l,&r)&&l) {
if(l>r)swap(l,r);
memset(cnt,,sizeof cnt);
++ka,solve(r,);
++ka,solve(l-,-);
for(int i=; i<=; ++i)printf("%d%c",cnt[i]," \n"[i==]);
}
return ;
}
UVA - 1640 The Counting Problem (数位dp)的更多相关文章
- UVA 1640 The Counting Problem UVA1640 求[a,b]或者[b,a]区间内0~9在里面各个数的数位上出现的总次数。
/** 题目:UVA 1640 The Counting Problem UVA1640 链接:https://vjudge.net/problem/UVA-1640 题意:求[a,b]或者[b,a] ...
- 『The Counting Problem 数位dp』
The Counting Problem Description 求 [L,R]内每个数码出现的次数. Input Format 若干行,一行两个正整数 L 和 R. 最后一行 L=R=0,表示输入结 ...
- UVA 1640 The Counting Problem
https://vjudge.net/problem/UVA-1640 题意:统计区间[l,r]中0——9的出现次数 数位DP 注意删除前导0 #include<cmath> #inclu ...
- UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)
题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...
- UVA 1640 The Counting Problem(按位dp)
题意:给你整数a.b,问你[a,b]间每个数字分解成单个数字后,0.1.2.3.4.5.6.7.8.9,分别有多少个 题解:首先找到[0,b]与[0,a-1]进行区间减法,接着就只是求[0,x] 对于 ...
- UVa 1640 - The Counting Problem(数论)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- POJ2282:The Counting Problem(数位DP)
Description Given two integers a and b, we write the numbers between a and b, inclusive, in a list. ...
- UVa 1640 The Counting Problem (数学,区间计数)
题意:给定两个数m, n,求从 m 到 n 中0-9数字各出现了多少次. 析:看起来挺简单的,其实并不好做,因为有容易想乱了.主要思路应该是这样的,分区间计数,先从个位进行计,一步一步的计算过来.都从 ...
- hdu 5106 Bits Problem(数位dp)
题目链接:hdu 5106 Bits Problem 题目大意:给定n和r,要求算出[0,r)之间全部n-onebit数的和. 解题思路:数位dp,一个ct表示个数,dp表示和,然后就剩下普通的数位d ...
随机推荐
- ERROR】Unable to open underlying table which is differently defined or of non-MyISAM type or ...
Error: Unable to open underlying table which is differently defined or of non-MyISAM type or doesn’t ...
- 应用安全 - 工具|平台 - CDN - 使用|命令 - 汇总
简介 用途 使用缓存适应高并发请求 功能 ()抗DDOS ()隐藏真实IP 全球DNS地址分布:http://www.ab173.com/dns/dns_world.php全球IP地址段分布:http ...
- 【C/C++开发】循环中使用递减计数与递增计数的效率区别
有两个循环语句: 复制代码代码如下: for(i = n; i > 0; i--) { - } for(i = 0; i < n; i++) { - } 为什么前者比后者快 ...
- Flume概述
flume是分布式的,可靠的,用于从不同的来源有效收集 聚集 和 移动 大量的日志数据用以集中式的数据存储的系统. 是apache的一个顶级项目. 系统需求:jdk1.6以上,推荐java1.7
- sqlalchemy orm的cascade的参数
#encoding: utf-8 from sqlalchemy import create_engine,Column,Integer,String,Float,func,and_,or_,Text ...
- C++深拷贝和浅拷贝细节理解
前提 在对象拷贝过程中,如果没有自定义拷贝构造函数,编译器会提供一个缺省的拷贝构造函数,缺省的拷贝构造函数对于基本类型的成员变量,按字节复制,对于类类型的成员变量则调用其相应的拷贝构造函数. 资料注解 ...
- azkaban安装步骤
安装包 1.得到软件包 azkaban-executor-server-2.5.0.tar.gz azkaban-sql-script-2.5.0.tar.gz azkaban-web-server- ...
- Spring 中的bean 是线程安全的吗?
结论: 不是线程安全的 Spring容器中的Bean是否线程安全,容器本身并没有提供Bean的线程安全策略,因此可以说Spring容器中的Bean本身不具备线程安全的特性,但是具体还是要结合具体sco ...
- python-redis缓存-pool
#连接池 import redis pool=redis.ConnectionPool(host='192.168.71.140', port=6379) r = redis.Redis(connec ...
- Java——BufferedImage对象
BufferedImage对象中最重要的两个组件是Raster与ColorModel,分别用于存储图像的像素数据和颜色数据. 1.Raster对象的作用与像素存储 BufferedImage支持从Ra ...