题意:统计l-r中每种数字出现的次数

很明显的数位dp问题,虽然有更简洁的做法但某人已经习惯了数位dp的风格所以还是选择扬长避短吧(说白了就是菜啊)

从高位向低位走,设状态$(u,lim,ze)$表示当前走到了第几位,是否有上限,是否有前导零的状态,则问题转化成了求所有转移路径中经过的所有数字的数量统计问题。

设$f[u][lim][ze]$为从状态$(u,lim,ze)$向后走能到达的状态总数,$g[u][lim][ze][i]$为状态$(u,lim,ze)$及其向后走能到达的所有状态中数字$i$出现的总数,各种转移就行了,实现细节比较复杂就不啰嗦了~~

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=+,inf=0x3f3f3f3f;
int l,r,bit[N],nb,f[N][][],g[N][][][],vis[N][][],cnt[N],ka;
void dfs(int u,int lim,int ze) {
if(vis[u][lim][ze]==ka)return;
vis[u][lim][ze]=ka;
if(u==) {
f[u][lim][ze]=;
for(int i=; i<=; ++i)g[u][lim][ze][i]=;
return;
}
f[u][lim][ze]=;
for(int i=; i<=; ++i)g[u][lim][ze][i]=;
for(int i=; i<=(lim?bit[u]:); ++i) {
int lim2=(lim&&i==bit[u]),ze2=(ze&&i==);
dfs(u-,lim2,ze2);
f[u][lim][ze]+=f[u-][lim2][ze2];
if(!(ze&&i==))g[u][lim][ze][i]+=f[u-][lim2][ze2];
for(int j=; j<=; ++j)g[u][lim][ze][j]+=g[u-][lim2][ze2][j];
}
}
void solve(int x,int F) {
for(nb=; x; x/=)bit[++nb]=x%;
dfs(nb,,);
for(int i=; i<=; ++i)cnt[i]+=F*g[nb][][][i];
}
int main() {
while(scanf("%d%d",&l,&r)&&l) {
if(l>r)swap(l,r);
memset(cnt,,sizeof cnt);
++ka,solve(r,);
++ka,solve(l-,-);
for(int i=; i<=; ++i)printf("%d%c",cnt[i]," \n"[i==]);
}
return ;
}

UVA - 1640 The Counting Problem (数位dp)的更多相关文章

  1. UVA 1640 The Counting Problem UVA1640 求[a,b]或者[b,a]区间内0~9在里面各个数的数位上出现的总次数。

    /** 题目:UVA 1640 The Counting Problem UVA1640 链接:https://vjudge.net/problem/UVA-1640 题意:求[a,b]或者[b,a] ...

  2. 『The Counting Problem 数位dp』

    The Counting Problem Description 求 [L,R]内每个数码出现的次数. Input Format 若干行,一行两个正整数 L 和 R. 最后一行 L=R=0,表示输入结 ...

  3. UVA 1640 The Counting Problem

    https://vjudge.net/problem/UVA-1640 题意:统计区间[l,r]中0——9的出现次数 数位DP 注意删除前导0 #include<cmath> #inclu ...

  4. UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)

    题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...

  5. UVA 1640 The Counting Problem(按位dp)

    题意:给你整数a.b,问你[a,b]间每个数字分解成单个数字后,0.1.2.3.4.5.6.7.8.9,分别有多少个 题解:首先找到[0,b]与[0,a-1]进行区间减法,接着就只是求[0,x] 对于 ...

  6. UVa 1640 - The Counting Problem(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  7. POJ2282:The Counting Problem(数位DP)

    Description Given two integers a and b, we write the numbers between a and b, inclusive, in a list. ...

  8. UVa 1640 The Counting Problem (数学,区间计数)

    题意:给定两个数m, n,求从 m 到 n 中0-9数字各出现了多少次. 析:看起来挺简单的,其实并不好做,因为有容易想乱了.主要思路应该是这样的,分区间计数,先从个位进行计,一步一步的计算过来.都从 ...

  9. hdu 5106 Bits Problem(数位dp)

    题目链接:hdu 5106 Bits Problem 题目大意:给定n和r,要求算出[0,r)之间全部n-onebit数的和. 解题思路:数位dp,一个ct表示个数,dp表示和,然后就剩下普通的数位d ...

随机推荐

  1. 2019年大牛最新整理的Python技术入门路线

    Python作为一门学习上手快.开发效率高.代码优雅的编程语言,一直以来都是最热门的几种语言之一,甚至在进入2019年之后热度超过了十几年的霸主Java,成为最受欢迎的语言.Python一直有胶水语言 ...

  2. 实验----Java的二维数组的应用及杨辉三角的编写

    (1) 编写一个程序,生成一个10*10的二维随机整数数组,并将该数组的每行最大值保存于一个一维数组中,将每列平均值保存于另外一个一维数组中并分别输出. (2) 编程输出杨辉三角的前10行. 找出一个 ...

  3. 在Debian下利用URLOS快速安装SqlServer2017

    SqlServer能在Debian上安装吗?答案是可以!网络上也能找到很多Linux系统下安装SqlServer的相关文章,也许经过一些折腾,你也能成功在Debian中安装sqlserver,但是其中 ...

  4. 前端 api 请求缓存方案

    参考链接:https://blog.csdn.net/zhuoganliwanjin/article/details/89598753#commentBox

  5. linux 在线安装jdk

    1. yum -y list java* 2.yum -y install java-1.8.0-openjdk*

  6. CVE-2018-19985漏洞学习

    简介 4.19.8之前,在Linux内核中,hso_probe()函数中发现了一个缺陷,该函数从USB设备(作为u8)读取if_num值,并且不需要对数组进行长度检查就使用它来索引数组,从而导致在hs ...

  7. 前端Ajax通过设置 timeout 参数,轮询后台API

    因为我连接的数据库在台湾,相距较远,所以conn.Open()方法打开极慢.前端Ajax访问API时,API的数据还未返回,前端Ajax访问已经超时. 所以设置一个轮询,设置相隔多少秒之后进行一次查询 ...

  8. Elasticsearch入门教程(六):Elasticsearch查询(二)

    原文:Elasticsearch入门教程(六):Elasticsearch查询(二) 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:h ...

  9. SQL学习(三)之子句和函数

    函数 COUNT()/计数.MIN()/最小值.MAX()/最大值.AVG()/平均值.SUM()/和 子句 子句是语句的一部分包括WHERE.GROUP.ORDER.LIMIT WHERE:条件 G ...

  10. 08 Python之内存管理

    python中的内存管理,从浅层次来说,可以分为3个方面来讲: 1,引用计数: python中引用计数,为了跟踪内存的对象 当创建对象的时候即被引用了,当对象不再被使用时,即某个对象的引用计数为0,它 ...