[BZOJ4444] [Luogu 4155] [LOJ 2007] [SCOI2015]国旗计划(倍增)
[BZOJ4444] [Luogu 4155] [LOJ 2007] [SCOI2015]国旗计划(倍增)
题面
题面较长,略
分析
首先套路的断环为链。对于从l到r的环上区间,若l<=r,我们把它断成两个区间\([l,r],[l+M,r+M]\),否则断成\([l,r+M],[l+M,r+M+M]\)(断成\([l+M,2M]\)也可以)
然后定义从区间[l,r]走到另一个与它相交的区间为1“步”。那么我们可以预处理出区间i走j步能够到达的区间右端点的最大值。注意到区间互不包含,先把区间按左端点为第一关键字,右端点为第二关键字排序。对于区间i,我们找到满足\(l_i<l_j \leq r_i\)的最大\(l_j\),那么\(r_j\)就是走1步能到达的最大区间右端点。因为\(l_j>l_i\),所以\(r_j>r_i\),否则区间j就会被i包含。由于排序过,j显然有单调性,双指针扫一遍就可以了。
sort(a+1,a+1+sz);
int ptr=1;
for(int i=1;i<=sz;i++){
while(ptr<sz&&a[ptr+1].l<=a[i].r) ptr++;
if(ptr!=i) anc[i][0]=ptr;
}
但是枚举走j步依然是\(O(n^2)\)的,可以用倍增优化。\(anc[i][j]\)表示区间i走j步到达的右端点最大的区间编号。这个可以\(O(n \log n)\)预处理。
查询的时候从i开始跳,一直跳到\(r_{anc[i][j]}\geq l_i+M\)为止,需注意边界条件
int query(int x){
int ans=1;
int r=a[x].l+len; //注意边界,比如3->5,5->1,1->3.必须要跳回原点3,所以是+len而不是+len-1
for(int i=log2n;i>=0;i--){
if(anc[x][i]!=0&&a[anc[x][i]].r<=r){//如果右端点<=i+M,就继续跳
ans+=(1<<i);
x=anc[x][i];
}
}
if(anc[x][0]&&a[x].r<r){//上面求的是右端点<=i+M,可能跳到了<i+M的某一个位置,再跳一步就超过i+M,这种情况也是合法的。特判一下。
ans++;
x=anc[x][0];
}
return ans; //保证一定有解,所以不用判断a[x].r是否>=r
}
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define INF 0x3f3f3f3f
#define maxn 2000000
#define maxlogn 25
using namespace std;
int n,len;
struct seg{
int l;
int r;
int id;
seg(){
}
seg(int _l,int _r,int _id){
l=_l;
r=_r;
id=_id;
}
friend bool operator < (seg p,seg q){
if(p.l==q.l) return p.r<q.r;
else return p.l<q.l;
}
}a[maxn+5];
int sz;
int log2n;
int ans[maxn+5];
int anc[maxn+5][maxlogn+5];
int query(int x){
int ans=1;
int r=a[x].l+len; //注意边界,比如3->5,5->1,1->3.必须要跳回原点3,所以是+len而不是+len-1
for(int i=log2n;i>=0;i--){
if(anc[x][i]!=0&&a[anc[x][i]].r<=r){
ans+=(1<<i);
x=anc[x][i];
}
}
if(anc[x][0]&&a[x].r<r){
ans++;
x=anc[x][0];
}
return ans;
}
int main(){
int l,r;
scanf("%d %d",&n,&len);
log2n=log2(n*2);
for(int i=1;i<=n;i++){
scanf("%d %d",&l,&r);
if(l<=r){
a[++sz]=seg(l,r,i);
a[++sz]=seg(l+len,r+len,i+n);
}else{
a[++sz]=seg(l,r+len,i);
a[++sz]=seg(l+len,r+len+len,i+n);
}
}
sort(a+1,a+1+sz);
int ptr=1;
for(int i=1;i<=sz;i++){
while(ptr<sz&&a[ptr+1].l<=a[i].r) ptr++;
if(ptr!=i) anc[i][0]=ptr;
}
for(int j=1;j<=log2n;j++){
for(int i=1;i<=sz;i++){
anc[i][j]=anc[anc[i][j-1]][j-1];
}
}
for(int i=1;i<=sz;i++){
if(a[i].id<=n) ans[a[i].id]=query(i);//注意要跳过(l+n,r+n),否则l+len会超过2*len导致答案错误
}
for(int i=1;i<=n;i++) printf("%d ",ans[i]);
}
[BZOJ4444] [Luogu 4155] [LOJ 2007] [SCOI2015]国旗计划(倍增)的更多相关文章
- 【bzoj4444】[Scoi2015]国旗计划 倍增
题目描述 给出一个圈和若干段,问:对于所有的 $i$ ,选择第 $i$ 段的情况下,最少需要选择多少段(包括第 $i$ 段)能够覆盖整个圈? 输入 第1行,包含2个正整数N,M,分别表示边防战士数量和 ...
- [BZOJ4444][SCOI2015]国旗计划(倍增)
链上是经典贪心问题,将线段全按左端点排序后把点全撒在线段右端点上.这里放到环上,倍长即可. 题目保证不存在区间包含情况,于是有一种暴力做法,先将战士的管辖区间按左端点从小到大排序,对于询问x,从x战士 ...
- 【BZOJ4444】[Scoi2015]国旗计划 双指针+倍增
[BZOJ4444][Scoi2015]国旗计划 Description A国正在开展一项伟大的计划——国旗计划.这项计划的内容是边防战士手举国旗环绕边境线奔袭一圈.这项计划需要多名边防战士以接力的形 ...
- [luogu] P4155 [SCOI2015]国旗计划(贪心)
P4155 [SCOI2015]国旗计划 题目描述 A 国正在开展一项伟大的计划 -- 国旗计划.这项计划的内容是边防战士手举国旗环绕边境线奔袭一圈.这项计划需要多名边防战士以接力的形式共同完成,为此 ...
- [SCOI2015]国旗计划[Wf2014]Surveillance
[SCOI2015]国旗计划 A国正在开展一项伟大的计划——国旗计划.这项计划的内容是边防战士手举国旗环绕边境线奔袭一圈.这 项计划需要多名边防战士以接力的形式共同完成,为此,国土安全局已经挑选了N名 ...
- 4444: [Scoi2015]国旗计划
4444: [Scoi2015]国旗计划 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 485 Solved: 232 Description A国 ...
- [Luogu 5465] [LOJ 6435] [PKUSC2018]星际穿越(倍增)
[Luogu 5465] [LOJ 6435] [PKUSC2018]星际穿越(倍增) 题面 n个点的图,点i和[l[i],i)的所有点连双向边.每次询问(l,r,x)表示x到[l,r]的所有点的最短 ...
- [bzoj4444] [loj#2007] [洛谷P4155] [Scoi2015] 国旗计划
Description \(A\) 国正在开展一项伟大的计划--国旗计划.这项计划的内容是边防战士手举国旗环绕边境线奔袭一圈.这项计划需要多名边防战士以接力的形式共同完成,为此,国土安全局已经挑选了 ...
- bzoj 4444: [Scoi2015]国旗计划
Description A国正在开展一项伟大的计划--国旗计划.这项计划的内容是边防战士手举国旗环绕边境线奔袭一圈.这 项计划需要多名边防战士以接力的形式共同完成,为此,国土安全局已经挑选了N名优秀的 ...
随机推荐
- (转)electron主线程中通过mainWindow.webContents.send发送事件,渲染线程接收不到
转自 https://segmentfault.com/q/1010000015599245/ 准备实现的功能: 页面1(渲染进程1)中点击按钮,发送事件给到主进程.主进程成功接收事件后,通过main ...
- Mapnik连接文件数据、数据库中的vertor数据和raster数据
Mapnik的XML文件,选择其中一个Datasource. <?xml version="1.0" encoding="utf-8"?> < ...
- Java面试之基础篇(5)
41.a.hashCode() 有什么用?与 a.equals(b) 有什么关系? hashCode() 方法对应对象整型的 hash 值.它常用于基于 hash 的集合类,如 Hash ...
- js对象的创建模式
方式一: Object构造函数模式 * 套路: 先创建空Object对象, 再动态添加属性/方法 * 适用场景: 起始时不确定对象内部数据 * 问题: 语句太多 /* 一个人: name:" ...
- linux 系统时间 硬件时间
Linux时钟分为系统时钟(System Clock)和硬件时钟(Real Time Clock,简称RTC).系统时钟是指当前Linux Kernel中的时钟:而硬件时钟则是主板上由电池供电的时钟, ...
- zookeeper3.5.5集群部署
ZooKeeper是一个为分布式应用所设计的分布的.开源的协调服务,它主要是用来解决分布式应用中经常遇到的一些数据管理问题,简化分布式应用协调及其管理的难度,提供高性能的分布式服务.ZooKeeper ...
- SpringMVC学习笔记之---RESTful风格
RESTful风格 (一)什么是RESTful (1)RESTful不是一套标准,只是一套开发方式,构架思想 (2)url更加简洁 (3)有利于不同系统之间的资源共享 (二)概述 RESTful具体来 ...
- Window、Linux查看本机外网ip
前言 我们上网用的IP并不一定是本机网卡的IP地址,由于公网IP地址稀少,国内绝大多数电脑上网,一般都是通过拨号或者端口映射.多个内网地址映射到一个公网地址来实现上网的. 目录 1.查看本机网卡ip ...
- final修饰的类,其属性和方法默认是被final修饰的吗?
在论坛上,看到一个问题,当然,各位聪明的客官想必已经知道问题是什么了,嘿嘿,没错就是文章的标题:final修饰的类,其属性和方法默认是被final修饰的吗? 老实说,刚开始看到这个问题的时候,有点懵. ...
- .net sqlite 内存溢出 问题的分析与解决。
一个小的工具网站,用了sqlite数据库,在并发小的情况一切正常,但是并发量上来之后,就报"out of memory"错误了. 分析了代码,就是很简单的根据一个条件取一段数据,并 ...