题目:https://www.acwing.com/problem/content/316/

题意:求一个最长单调递减子序列,然后并且求方案数,如果序列完全一样就不要了

思路:我们肯定时修改LIS,我们在求得当前结尾得最长长度后,我们遍历前面是否有和当前数相等得数,如果有就把他的长度清零,避免重复方案数,然后我们再用一个数组记录以当前结尾得方案数有多少个

#include<bits/stdc++.h>
#define maxn 100005
#define mod 1000000007
using namespace std;
typedef long long ll;
ll f[maxn],g[maxn],a[maxn],n;
int main(){
cin>>n;
for(int i=;i<=n;i++){
cin>>a[i];
}
g[]=;
for(int i=;i<=n;i++){
for(int j=;j<i;j++){
if(j==||a[i]<a[j])
f[i]=max(f[i],f[j]+);
}
for(int j=;j<i;j++){
if(a[j]==a[i]){
f[j]=;
}
}
for(int j=;j<i;j++){
if((!j||a[j]>a[i])&&f[i]==f[j]+){
g[i]+=g[j];
}
}
}
ll mx=;
for(int i=;i<=n;i++){
mx=max(mx,f[i]);
}
ll sum=;
for(int i=;i<=n;i++){
if(f[i]==mx){
sum+=g[i];
}
}
/*for(int i=1;i<=n;i++){
cout<<g[i]<<" ";
}
cout<<"\n";*/
cout<<mx<<" "<<sum;
}

AcWing 314. 低买 (线性DP)打卡的更多相关文章

  1. AcWing 313. 花店橱窗 (线性DP)打卡

    题目:https://www.acwing.com/problem/content/315/ 题意:有一个矩阵,你需要在每一行选择一个数,必须保证前一行的数的下标选择在下一行的左边,即下标有单调性,然 ...

  2. 动态规划——线性dp

    我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...

  3. 2018.08.16 洛谷P2029 跳舞(线性dp)

    传送门 简单的线性dp" role="presentation" style="position: relative;">dpdp. 直接推一推 ...

  4. 线性dp

    线性dp应该是dp中比较简单的一类,不过也有难的.(矩乘优化递推请出门右转) 线性dp一般是用前面的状态去推后面的,也有用后面往前面推的,这时候把循环顺序倒一倒就行了.如果有的题又要从前往后推又要从后 ...

  5. 非常完整的线性DP及记忆化搜索讲义

    基础概念 我们之前的课程当中接触了最基础的动态规划. 动态规划最重要的就是找到一个状态和状态转移方程. 除此之外,动态规划问题分析中还有一些重要性质,如:重叠子问题.最优子结构.无后效性等. 最优子结 ...

  6. Hills——一道转移方程很“有趣”的线性DP

    题目描述 Welcome to Innopolis city. Throughout the whole year, Innopolis citizens suffer from everlastin ...

  7. 最长子序列(线性DP)学习笔记

    子序列和子串不一样.子串要求必须连续,而子序列不需要连续. 比如说\(\{a_1,a_2\dots a_n\}\),他的子串就是\(\{a_i,a_{i+1},\dots, a_j|1\leq i\l ...

  8. LightOJ1044 Palindrome Partitioning(区间DP+线性DP)

    问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...

  9. Codeforces 176B (线性DP+字符串)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...

随机推荐

  1. 表单组件中state依赖props

    参阅避免派生状态的博文: https://zh-hans.reactjs.org/blog/2018/06/07/you-probably-dont-need-derived-state.html

  2. Learn Python the hard way, ex40 字典,可爱的字典

    #!/usr/bin/python #coding:utf-8 cities ={'CA':'sf','MI':'dt','FL':'je'} #创建字典 cities['NY']='ny' #增加新 ...

  3. 关于this、Echarts中的data

    this是指当前对象 移除class的jQuery代码:$('ur.nav li:eq(0)').removeClass('active') 添加class的jQuery代码:$('ur.nav li ...

  4. spring-第十篇之XML Schema的简化配置,p、c、util命名空间

    1.p:命名空间 引入命名空间:xmlns:p="http://www.springframework.org/schema/p" 配置举例: <?xml version=& ...

  5. mysql 主从复制 (2)

    今天说一下MySQL的主从复制如何做到! 准备工作: 1.两个虚拟机:我这里用的是CentOS5.5,IP地址分别是192.168.1.101 和192.168.1.105: 101做主服务器,105 ...

  6. [转]java web 文件上传

    实现WEB开发中的文件上传功能,需完成如下二步操作: 在WEB页面中添加上传输入项,<input type=“life” name=“”>,使用时注意: 1.          必须要设置 ...

  7. Js数据去重复,时间更换格式,cookie,localStorage和sessionStorage的使用等通用方法

    一,数组去重复 function unique(arr) { // 遍历arr,把元素分别放入tmp数组(不存在才放) var tmp = new Array(); for (var i in arr ...

  8. redhat6.5单用户重置root密码

    (1),按 “e” 键进入该界面,继续按 “e” 键进入下一个界面. (2).上下键选中第二个kernel选项,继续按 “e” 键进行编辑. (3).在新的界面里面加一个空格,再输入“1”:或者输入“ ...

  9. git账号失效问题解决

    linux开发机上,使用某人账号,进行代码同步.该员工离职,导致该git账号不可用. 此时需要完成3步配置: 1.生成新的公私秘钥:在~/.ssh/config中把私钥文件路径 append到文件末尾 ...

  10. elasticsearch 深入 —— 地理位置

    地理位置 我们拿着纸质地图漫步城市的日子一去不返了.得益于智能手机,我们现在总是可以知道 自己所处的准确位置,也预料到网站会使用这些信息.我想知道从当前位置步行 5 分钟内可到的那些餐馆,对伦敦更大范 ...