HDU-3714 Error Curves(凸函数求极值)
Error Curves
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 6241 Accepted Submission(s): 2341
pays much attention to a method called Linear Discriminant Analysis, which
has many interesting properties.
In order to test the algorithm's efficiency, she collects many datasets.
What's more, each data is divided into two parts: training data and test
data. She gets the parameters of the model on training data and test the
model on test data. To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.

It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimum which related to multiple quadric functions. The new function F(x) is defined as follows: F(x) = max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function. Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?
1
2 0 0
2
2 0 0
2 -4 2
0.5000
#pragma GCC diagnostic error "-std=c++11"
#include<bits/stdc++.h>
#define _ ios_base::sync_whit_stdio(0);cin.tie(0); using namespace std;
const int N = + ;
const int INF = (<<);
const double eps = 1e-; double a[N], b[N], c[N];
int n; double fun(double x){
double res = - INF;
for(int i = ; i < n; i++)
res = max(res, a[i] * x * x + b[i] * x + c[i]);
return res;
} double ternary_search(double L, double R){
double mid1, mid2;
while(R - L > eps){
mid1 = ( * L + R) / ;
mid2 = (L + * R) / ;
if(fun(mid1) >= fun(mid2)) L = mid1;
else R = mid2;
}
return (L + R) * 0.5;
} int main(){
int T;
scanf("%d", &T);
while(T--){
scanf("%d", &n);
for(int i = ; i < n; i++){
scanf("%lf %lf %lf", &a[i], &b[i], &c[i]);
}
double x = ternary_search(, );
printf("%.4f\n", fun(x));
}
}
HDU-3714 Error Curves(凸函数求极值)的更多相关文章
- LA 5009 (HDU 3714) Error Curves (三分)
Error Curves Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu SubmitStatusPr ...
- hdu 3714 Error Curves(三分)
Error Curves Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Tot ...
- HDU 3714 Error Curves
Error Curves 思路:这个题的思路和上一个题的思路一样,但是这个题目卡精度,要在计算时,卡到1e-9. #include<cstdio> #include<cstring& ...
- hdu 3714 Error Curves(三分)
http://acm.hdu.edu.cn/showproblem.php?pid=3714 [题意]: 题目意思看了很久很久,简单地说就是给你n个二次函数,定义域为[0,1000], 求x在定义域中 ...
- nyoj 1029/hdu 3714 Error Curves 三分
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3714 懂了三分思想和F(x)函数的单调性质,这题也就是水题了 #include "stdio ...
- 三分 HDOJ 3714 Error Curves
题目传送门 /* 三分:凹(凸)函数求极值 */ #include <cstdio> #include <algorithm> #include <cstring> ...
- HDU-4717 The Moving Points(凸函数求极值)
The Moving Points Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- Error Curves HDU - 3714
Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a m ...
- HDU 3714/UVA1476 Error Curves
Error Curves Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Tota ...
随机推荐
- CF #355div2 D 宝藏与钥匙 dp 二维数组智商题
D. Vanya and Treasure time limit per test 1.5 seconds memory limit per test 256 megabytes input stan ...
- Fiona简介
Fiona是一个python地理空间处理库,类似于OGR
- python学习之路(20)
装饰器 由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数. >>> def now(): print('2019.0519') >>> ...
- python学习之路(16)
Python内建的filter()函数用于过滤序列. 和map()类似,filter()也接收一个函数和一个序列.和map()不同的时,filter()把传入的函数依次作用于每个元素,然后根据返回值是 ...
- laravel中事件的监听和订阅
一.前言 更新员工部门主管的时候,需要重新更新一下缓存,这个会比较耗时.所以计划放到队列中来执行.后来想了想,其实用一下事件监听也能实现.人家都说好,然是我也没感觉到有什么好的. 二.正文 1. 在p ...
- DB2基础维护手册
诊断DB2系统性能:db2top -d DEMODB db2top详解:http://blog.sina.com.cn/s/blog_636d62310102v7lm.html
- QBXTD2上午
话说lyd昨天没讲完他的该死的贪心,所以今天继续讲 贪心思想是考虑AB是最快的人,CD是最慢的人,要把CD两个人送过河,只有两种方案,牵扯到四个人,并且n个规模的原问题化成了n-2个规模的子问题 那么 ...
- java 传值
好文章:https://zwmf.iteye.com/blog/1738574 public class Test { public int i,j; public void test_m(Test ...
- PADS常用画板过程
转载:PADS LAYOUT的一般流程 http://www.doc88.com/p-9129306856292.html https://wenku.baidu.com/view/cc4e0b338 ...
- leetcode 714. 买卖股票的最佳时机含手续费
继承leetcode123以及leetcode309的思路,,但应该也可以写成leetcode 152. 乘积最大子序列的形式 class Solution { public: int maxProf ...