P3515 [POI2011]Lightning Conductor

式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$

$j>i$的情况,把上式翻转即可得到

下面给一张图证明这是满足决策单调性的

把$a_j+sqrt(i-j)$表示在坐标系上

显然$sqrt(i-j)$的增长速度趋缓

曲线$a$被曲线$b$超过后是无法翻身的

对两个方向进行决策单调性分治,取$max$即可

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int read(){
char c=getchar(); int x=,f=;
while(c<''||c>'') f=f&&(c!='-'),c=getchar();
while(''<=c&&c<='') x=x*+c-,c=getchar();
return f?x:-x;
}
#define N 500005
int n,a[N]; double p1[N],p2[N],w;
void solve1(int l,int r,int dl,int dr){
int m=(l+r)/,dm=dl;
for(int i=dl;i<=m&&i<=dr;++i)
if(p1[m]<(w=a[i]-a[m]+sqrt(m-i)))
p1[m]=w,dm=i;
if(l<m) solve1(l,m-,dl,dm);
if(m<r) solve1(m+,r,dm,dr);
}
void solve2(int l,int r,int dl,int dr){
int m=(l+r)/,dm=dr;
for(int i=dr;i>=m&&i>=dl;--i)
if(p2[m]<(w=a[i]-a[m]+sqrt(i-m)))
p2[m]=w,dm=i;
if(l<m) solve2(l,m-,dl,dm);
if(m<r) solve2(m+,r,dm,dr);
}
int main(){
n=read();
for(int i=;i<=n;++i) a[i]=read();
solve1(,n,,n);
solve2(,n,,n);
for(int i=;i<=n;++i)
printf("%d\n",(int)ceil(max(p1[i],p2[i])));
}

P3515 [POI2011]Lightning Conductor(决策单调性分治)的更多相关文章

  1. P3515 [POI2011]Lightning Conductor[决策单调性优化]

    给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...

  2. 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性

    [BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...

  3. LOJ2074/2157 JSOI2016/POI2011 Lightning Conductor 决策单调性DP

    传送门 我们相当于要求出\(f_i = \max\limits_{j=1}^{n} (a_j + \sqrt{|i-j|})\).这个绝对值太烦人了,考虑对于\(i>j\)和\(i<j\) ...

  4. BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性

    BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性 Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n, ...

  5. 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)

    洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...

  6. 洛谷P3515 [POI2011]Lightning Conductor(决策单调性)

    题意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) ...

  7. 洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP

    题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/725 ...

  8. P3515 [POI2011]Lightning Conductor

    首先进行一步转化 $a_j \leq a_i + q - sqrt(abs(i - j))$ $a_i + q \geq a_j + sqrt(abs(i-j))$ 即 $q = max (a_j + ...

  9. [bzoj 2216] [Poi2011] Lightning Conductor

    [bzoj 2216] [Poi2011] Lightning Conductor Description 已知一个长度为n的序列a1,a2,-,an. 对于每个1<=i<=n,找到最小的 ...

随机推荐

  1. OGG replicat复制进程的拆分

    参考资料: 1.https://blog.csdn.net/datingting1/article/details/79583690

  2. 一、ARM

    1.1 ARM 分类 1.1.1 版本号分类 以前分类的是 ARM7,ARM9... ARM11,在 ARM11 之后,就是以 Cortex 系列分类了: Cortex-R:应用在实时系统上的系列 C ...

  3. P1864 [NOI2009]二叉查找树

    链接P1864 [NOI2009]二叉查找树 这题还是蛮难的--是我菜. 题目描述中的一大堆其实就是在描述\(treap.\),考虑\(treap\)的一些性质: 首先不管怎么转,中序遍历是确定的,所 ...

  4. Django登录(含随机生成图片验证码)注册实例

    登录,生成随机图片验证码 一.登录 - 随机生成图片验证码 1.随机生成验证码 Python随机生成图片验证码,需要使用PIL模块,安装方式如下: pip3 install pillow 1)创建图片 ...

  5. 对vue的研究

    beforeDestroy 类型:Function 详细: 实例销毁之前调用.在这一步,实例仍然完全可用. 该钩子在服务器端渲染期间不被调用. 参考:生命周期图示 destroyed 类型:Funct ...

  6. vue对特殊特性的研究

    key 预期:number | string key 的特殊属性主要用在 Vue 的虚拟 DOM 算法,在新旧 nodes 对比时辨识 VNodes.如果不使用 key,Vue 会使用一种最大限度减少 ...

  7. LeetCode--045--跳跃游戏II(java)

    给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 你的目标是使用最少的跳跃次数到达数组的最后一个位置. 示例: 输入: [2,3,1,1,4] 输 ...

  8. Listary安装+破解

    Listary 是 windows 下一个可以快速搜索所有程序,文件,并且可以快速启动程序和打开相应文件的这么一个工具,但这只是它的一个主要功能,还有其功能也是很屌的. 详细的介绍参考:[Listar ...

  9. 【转】Django-template模板语言

    Django-template模板语言 转自:https://www.cnblogs.com/zzy-9318/p/8672945.html 一.常用语法 只需要记两种特殊符号: {{  }}和 {% ...

  10. oracle 字段信息

    oracle 修改字段的长度alter table tablename modify column_name varchar2(32)alter table tablename modify (col ...