P3515 [POI2011]Lightning Conductor

式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$

$j>i$的情况,把上式翻转即可得到

下面给一张图证明这是满足决策单调性的

把$a_j+sqrt(i-j)$表示在坐标系上

显然$sqrt(i-j)$的增长速度趋缓

曲线$a$被曲线$b$超过后是无法翻身的

对两个方向进行决策单调性分治,取$max$即可

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int read(){
char c=getchar(); int x=,f=;
while(c<''||c>'') f=f&&(c!='-'),c=getchar();
while(''<=c&&c<='') x=x*+c-,c=getchar();
return f?x:-x;
}
#define N 500005
int n,a[N]; double p1[N],p2[N],w;
void solve1(int l,int r,int dl,int dr){
int m=(l+r)/,dm=dl;
for(int i=dl;i<=m&&i<=dr;++i)
if(p1[m]<(w=a[i]-a[m]+sqrt(m-i)))
p1[m]=w,dm=i;
if(l<m) solve1(l,m-,dl,dm);
if(m<r) solve1(m+,r,dm,dr);
}
void solve2(int l,int r,int dl,int dr){
int m=(l+r)/,dm=dr;
for(int i=dr;i>=m&&i>=dl;--i)
if(p2[m]<(w=a[i]-a[m]+sqrt(i-m)))
p2[m]=w,dm=i;
if(l<m) solve2(l,m-,dl,dm);
if(m<r) solve2(m+,r,dm,dr);
}
int main(){
n=read();
for(int i=;i<=n;++i) a[i]=read();
solve1(,n,,n);
solve2(,n,,n);
for(int i=;i<=n;++i)
printf("%d\n",(int)ceil(max(p1[i],p2[i])));
}

P3515 [POI2011]Lightning Conductor(决策单调性分治)的更多相关文章

  1. P3515 [POI2011]Lightning Conductor[决策单调性优化]

    给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...

  2. 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性

    [BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...

  3. LOJ2074/2157 JSOI2016/POI2011 Lightning Conductor 决策单调性DP

    传送门 我们相当于要求出\(f_i = \max\limits_{j=1}^{n} (a_j + \sqrt{|i-j|})\).这个绝对值太烦人了,考虑对于\(i>j\)和\(i<j\) ...

  4. BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性

    BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性 Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n, ...

  5. 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)

    洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...

  6. 洛谷P3515 [POI2011]Lightning Conductor(决策单调性)

    题意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) ...

  7. 洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP

    题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/725 ...

  8. P3515 [POI2011]Lightning Conductor

    首先进行一步转化 $a_j \leq a_i + q - sqrt(abs(i - j))$ $a_i + q \geq a_j + sqrt(abs(i-j))$ 即 $q = max (a_j + ...

  9. [bzoj 2216] [Poi2011] Lightning Conductor

    [bzoj 2216] [Poi2011] Lightning Conductor Description 已知一个长度为n的序列a1,a2,-,an. 对于每个1<=i<=n,找到最小的 ...

随机推荐

  1. Taro -- 使用 Redux 来进行全局变量的管理

    前言 Redux是JavaScript 状态容器,提供可预测化的状态管理.一般来说,规模比较大的小程序,页面状态,数据缓存,需要管理的东西太多,这时候引入Redux可以方便的管理这些状态,同一数据,一 ...

  2. 二、搭建Swagger

    1.新建.netCore webapi项目 2.安装swagger ,通过 Package Manager 控制台:Install-Package Swashbuckle.AspNetCore 3.修 ...

  3. set unused

    使用 set unused 选项标记不再使用的列 使用 drop unsused columns 丢弃标记为unused的列 alter table tabName set unused column ...

  4. Java 多态概念、使用

    1.概念 2.多态的格式与使用 package Java12; /* 代码当中体现多态性,其实就是一句话: 父类引用指向子类对象 格式: 父类名称 对象名 = new 子类名称(): 或者: 接口名称 ...

  5. Vue 学习之 vue-router2

    ---恢复内容开始--- 一.路由的安装: npm安装 npm install vue-router --save 执行命令完成vue-router的安装,并在package.json中添加了vue- ...

  6. Springboot 默认cache

    1:Springboot 默认缓存为ConcurrentMapCacheManager(spring-context) 2:再启动类上开启缓存 @SpringBootApplication //相当于 ...

  7. alert(1) to win

    一. function escape(s) { return '<script>console.log("'+s+'");</script>'; } 两种思 ...

  8. Spring如何解决循环依赖问题

    目录 1. 什么是循环依赖? 2. 怎么检测是否存在循环依赖 3. Spring怎么解决循环依赖 本文主要是分析Spring bean的循环依赖,以及Spring的解决方式. 通过这种解决方式,我们可 ...

  9. LeetCode--055--跳跃游戏(java)

    给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 判断你是否能够到达最后一个位置. 示例 1: 输入: [2,3,1,1,4] 输出: true ...

  10. Linux find过滤掉没有查看权限的文件

    参考:https://blog.csdn.net/sinat_39416814/article/details/84993424 https://www.jianshu.com/p/2b056e1c0 ...