Desert King(01分数规划问题)(最优斜率生成树)
| Time Limit: 3000MS | Memory Limit: 65536K | |
| Total Submissions:33847 | Accepted: 9208 |
Description
After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary channels to bring water to all the villages, which means there will be only one way to connect each village to the capital.
His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line.
As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.
Input
Output
Sample Input
4
0 0 0
0 1 1
1 1 2
1 0 3
0
Sample Output
1.000
题意
有带权图G, 对于图中每条边e[i], 都有benifit[i](收入)和cost[i](花费), 我们要求的是一棵生成树T, 它使得 ∑(benifit[i]) / ∑(cost[i]), i∈T 最大(或最小).
这显然是一个具有现实意义的问题.
题解
解法之一 0-1分数规划
设x[i]等于1或0, 表示边e[i]是否属于生成树.
则我们所求的比率 r = ∑(benifit[i] * x[i]) / ∑(cost[i] * x[i]), 0≤i<m .
为了使 r 最大, 设计一个子问题---> 让 z = ∑(benifit[i] * x[i]) - l * ∑(cost[i] * x[i]) = ∑(d[i] * x[i]) 最大 (d[i] = benifit[i] - l * cost[i]) , 并记为z(l). 我们可以兴高采烈地把z(l)看做以d为边权的最大生成树的总权值.
然后明确两个性质:
1. z单调递减
证明: 因为cost为正数, 所以z随l的减小而增大.
2. z( max(r) ) = 0
证明: 若z( max(r) ) < 0, ∑(benifit[i] * x[i]) - max(r) * ∑(cost[i] * x[i]) < 0, 可化为 max(r) < max(r). 矛盾;
若z( max(r) ) >= 0, 根据性质1, 当z = 0 时r最大.
到了这个地步, 七窍全已打通, 喜欢二分的上二分, 喜欢Dinkelbach的就Dinkelbach.
复杂度
时间 O( O(MST) * log max(r) )
空间 O( O(MST) )
C++代码
二分法
/*
*@Author: Agnel-Cynthia
*@Language: C++
*/
//#include <bits/stdc++.h>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<string>
#include<vector>
#include<bitset>
#include<queue>
#include<deque>
#include<stack>
#include<cmath>
#include<list>
#include<map>
#include<set>
//#define DEBUG
#define RI register int
#define endl "\n"
using namespace std;
typedef long long ll;
//typedef __int128 lll;
const int N=+;
const int M=+;
const int MOD=1e9+;
const double PI = acos(-1.0);
const double EXP = 1E-;
const int INF = 0x3f3f3f3f;
//int t,n,m,k,p,l,r,u,v;
const int maxn = ;
//ll a[maxn],b[maxn]; struct node
{
int x , y ,z ;
}edge[maxn]; int n ; double mp[maxn][maxn]; double dis(double x1 ,double y1,double x2,double y2){
return sqrt(1.0*(x1-x2) * (x1 - x2) + 1.0 * (y1 - y2) * (y1 - y2));
} void creat(){
for(int i = ;i <= n ;i ++){
for(int j = ;j <= n ; j++){
mp[i][j] = dis(edge[i].x,edge[i].y,edge[j].x,edge[j].y);
}
}
} double d[maxn];
bool vis[maxn]; double prime(double mid){
memset(vis,,sizeof vis);
for(int i = ;i <= n ; i++){
d[i] = abs(edge[].z - edge[i].z) - mp[][i] * mid;
}
vis[] = true;
double ans = ;
for(int i = ;i < n ; i++){
int v = -;double MIN = INF;
for(int j = ;j <= n ; j++){
if(MIN >= d[j] && !vis[j]){
v = j;
MIN = d[j];
}
}
if(v == -)
break;
vis[v] = true;
ans += MIN;
for(int j = ;j <= n ; j++){
if(!vis[j] && (fabs(edge[v].z - edge[j].z) - mp[v][j] * mid) < d[j])
d[j] = (fabs(edge[v].z - edge[j].z) - mp[v][j] * mid);
}
}
return ans ;
} int main()
{
#ifdef DEBUG
freopen("input.in", "r", stdin);
//freopen("output.out", "w", stdout);
#endif
// ios::sync_with_stdio(false);
// cin.tie(0);
// cout.tie(0);
while(cin >> n && n){
for(int i = ;i <= n ; i++){
cin >> edge[i].x >> edge[i].y >> edge[i].z;
}
double l = , r = 40.0;
double mid = ;
creat();
while(fabs(r - l) > EXP){
mid = (l + r) / ;
if(prime(mid) >= )
l = mid;
else
r = mid;
}
printf("%.3lf\n",mid );
}
#ifdef DEBUG
printf("Time cost : %lf s\n",(double)clock()/CLOCKS_PER_SEC);
#endif
//cout << "Hello world!" << endl;
return ;
}
Dinkelbach
/*
*@Author: Agnel-Cynthia
*@Language: C++
*/
//#include <bits/stdc++.h>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<string>
#include<vector>
#include<bitset>
#include<queue>
#include<deque>
#include<stack>
#include<cmath>
#include<list>
#include<map>
#include<set>
//#define DEBUG
#define RI register int
#define endl "\n"
using namespace std;
typedef long long ll;
//typedef __int128 lll;
const int N=+;
const int M=+;
const int MOD=1e9+;
const double PI = acos(-1.0);
const double EXP = 1E-;
const int INF = 0x3f3f3f3f;
//int t,n,m,k,p,l,r,u,v;
//ll a[maxn],b[maxn]; #define Rep(i,l,r) for(i=(l);i<=(r);i++)
#define rep(i,l,r) for(i=(l);i< (r);i++)
#define Rev(i,r,l) for(i=(r);i>=(l);i--)
#define rev(i,r,l) for(i=(r);i> (l);i--)
#define Each(i,v) for(i=v.begin();i!=v.end();i++)
#define r(x) read(x) int CH , NEG ;
template <typename TP>inline void read(TP& ret) {
ret = NEG = ; while (CH=getchar() , CH<'!') ;
if (CH == '-') NEG = true , CH = getchar() ;
while (ret = ret*+CH-'' , CH=getchar() , CH>'!') ;
if (NEG) ret = -ret ;
}
#define maxn 1010LL
#define infi 100000000LL
#define eps 1E-8F
#define sqr(x) ((x)*(x)) template <typename TP>inline bool MA(TP&a,const TP&b) { return a < b ? a = b, true : false; }
template <typename TP>inline bool MI(TP&a,const TP&b) { return a > b ? a = b, true : false; } int n;
int x[maxn], y[maxn], h[maxn];
double v[maxn][maxn], c[maxn][maxn]; bool vis[maxn];
double w[maxn];
double rv[maxn];///
inline double prim(double M) {
int i, j, k;
double minf, minw;
double sumc = , sumv = ;///
memset(vis,,sizeof vis);
Rep (i,,n) w[i] = v[][i]-M*c[][i],
rv[i] = v[][i];///
vis[] = true, minf = ;
rep (i,,n) {
minw = infi;
Rep (j,,n) if (!vis[j] && w[j]<minw)
minw = w[j], k = j;
sumv += rv[k], sumc += rv[k]-w[k];///
minf += minw, vis[k] = true;
Rep (j,,n) if (!vis[j])
if (MI(w[j],v[k][j]-M*c[k][j]))
rv[j] = v[k][j];///
}
return sumv*M/sumc;///
return minf;
} int main() {
int i, j;
double L, M, R;
double maxv, maxc, minv, minc;
while (scanf("%d", &n)!=EOF && n) {
Rep (i,,n)
scanf("%d%d%d", &x[i], &y[i], &h[i]);
maxv = maxc = -infi, minv = minc = infi;
rep (i,,n) Rep (j,i+,n) {
c[i][j] = c[j][i] = sqrt(sqr((double)x[i]-x[j])+sqr((double)y[i]-y[j]));
v[i][j] = v[j][i] = abs((double)h[i]-h[j]);
MA(maxv,v[i][j]), MI(minv,v[i][j]);
MA(maxc,c[i][j]), MI(minc,c[i][j]);
}
L = minv/maxc, R = maxv/minc;
while (true) {///
R = prim(L);///
if (fabs(L-R) < eps) break;///
L = R;///
}///
/*while (R-L > 1E-6) { // L:minf>0 R:minf<=0
M = (L+R)/2.0;
if (prim(M) > eps) L = M;
else R = M;
}*/
printf("%.3f\n", R);
}
//END: getchar(), getchar();
return ;
}
Desert King(01分数规划问题)(最优斜率生成树)的更多相关文章
- POJ 2728 Desert King 01分数规划,最优比率生成树
一个完全图,每两个点之间的cost是海拔差距的绝对值,长度是平面欧式距离, 让你找到一棵生成树,使得树边的的cost的和/距离的和,比例最小 然后就是最优比例生成树,也就是01规划裸题 看这一发:ht ...
- POJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)
[题意]每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树. 标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz ...
- POJ 2728 Desert King (01分数规划)
Desert King Time Limit: 3000MS Memory Limit: 65536K Total Submissions:29775 Accepted: 8192 Descr ...
- poj2728 Desert King——01分数规划
题目:http://poj.org/problem?id=2728 第一道01分数规划题!(其实也蛮简单的) 这题也可以用迭代做(但是不会),这里用了二分: 由于比较裸,不作过多说明了. 代码如下: ...
- 【POJ2728】Desert King - 01分数规划
Description David the Great has just become the king of a desert country. To win the respect of his ...
- poj2728 Desert King --- 01分数规划 二分水果。。
这题数据量较大.普通的求MST是会超时的. d[i]=cost[i]-ans*dis[0][i] 据此二分. 但此题用Dinkelbach迭代更好 #include<cstdio> #in ...
- POJ 2728 Desert King | 01分数规划
题目: http://poj.org/problem?id=2728 题解: 二分比率,然后每条边边权变成w-mid*dis,用prim跑最小生成树就行 #include<cstdio> ...
- 【POJ2728】Desert King(分数规划)
[POJ2728]Desert King(分数规划) 题面 vjudge 翻译: 有\(n\)个点,每个点有一个坐标和高度 两点之间的费用是高度之差的绝对值 两点之间的距离就是欧几里得距离 求一棵生成 ...
- POJ 3621 Sightseeing Cows 01分数规划,最优比例环的问题
http://www.cnblogs.com/wally/p/3228171.html 题解请戳上面 然后对于01规划的总结 1:对于一个表,求最优比例 这种就是每个点位有benefit和cost,这 ...
- 【转】[Algorithm]01分数规划
因为搜索关于CFRound277.5E题的题解时发现了这篇文章,很多地方都有值得借鉴的东西,因此转了过来 原文:http://www.cnblogs.com/perseawe/archive/2012 ...
随机推荐
- jquery animated选择器 语法
jquery animated选择器 语法 作用::animated 选择器选取当前的所有动画元素.直线电机参数 语法:$(":animated") jquery animated ...
- new/delete和malloc/free区别与联系
1.基本概念 malloc/free (1).函数原型及说明 void *malloc(long NumBytes): 该函数分配了NumBytes个字节,并返回了指向这块内存的指针.如果分配失败,则 ...
- js控制页面每次滚动一屏,和楼梯效果
我最近在做我们公司官网的改版,产品中心就是每次滚一屏的,我觉得加上楼梯更方便用户浏览,就随便写了个demo, 先来看看结构,都很简单的 <!--楼梯--> <ul class=&qu ...
- 详解cocos2dx 3.0的release版本在android平台的签名过程
当您的游戏准备发布前,需要编译成为release版本,命令中需要增加 -m release,编译命令如下: cocos compile -p android -m release 在编译结束后,生成x ...
- Java数据结构之排序---选择排序
简单选择排序的介绍: 从给定的序列中,按照指定的规则选出某一个元素,再根据规定交换位置后达到有序的目的. 简单选择排序的基本思想: 假定我们的数组为int [] arr = new int[n],第一 ...
- 添加tomcat为启动服务/删除tomcat服务
在很多生产把环境下,tomcat的启动要随着windows的启动一起启动,这个时候就需要将tomcat添加成服务.步骤如下: 1:环境配置 配置jdk环境变量: JAVA_HOME:jdk路径 配置p ...
- Using FileUpload
Using FileUpload FileUpload can be used in a number of different ways, depending upon the requiremen ...
- 无法加载模块 TP3.2
报错 3.2的路由功能是针对模块设置的,所以URL中的模块名不能被路由,路由定义也通常是放在模块配置文件中. 'MODULE_DENY_LIST' => array('Common','User ...
- linux系统PS命令,按CPU、内存使用率对进程排序
https://blog.csdn.net/weixin_42123737/article/details/90081318
- docker安装和hub
yum install wget wget https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo yum list dock ...