Desert King(01分数规划问题)(最优斜率生成树)
| Time Limit: 3000MS | Memory Limit: 65536K | |
| Total Submissions:33847 | Accepted: 9208 |
Description
After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary channels to bring water to all the villages, which means there will be only one way to connect each village to the capital.
His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line.
As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.
Input
Output
Sample Input
4
0 0 0
0 1 1
1 1 2
1 0 3
0
Sample Output
1.000
题意
有带权图G, 对于图中每条边e[i], 都有benifit[i](收入)和cost[i](花费), 我们要求的是一棵生成树T, 它使得 ∑(benifit[i]) / ∑(cost[i]), i∈T 最大(或最小).
这显然是一个具有现实意义的问题.
题解
解法之一 0-1分数规划
设x[i]等于1或0, 表示边e[i]是否属于生成树.
则我们所求的比率 r = ∑(benifit[i] * x[i]) / ∑(cost[i] * x[i]), 0≤i<m .
为了使 r 最大, 设计一个子问题---> 让 z = ∑(benifit[i] * x[i]) - l * ∑(cost[i] * x[i]) = ∑(d[i] * x[i]) 最大 (d[i] = benifit[i] - l * cost[i]) , 并记为z(l). 我们可以兴高采烈地把z(l)看做以d为边权的最大生成树的总权值.
然后明确两个性质:
1. z单调递减
证明: 因为cost为正数, 所以z随l的减小而增大.
2. z( max(r) ) = 0
证明: 若z( max(r) ) < 0, ∑(benifit[i] * x[i]) - max(r) * ∑(cost[i] * x[i]) < 0, 可化为 max(r) < max(r). 矛盾;
若z( max(r) ) >= 0, 根据性质1, 当z = 0 时r最大.
到了这个地步, 七窍全已打通, 喜欢二分的上二分, 喜欢Dinkelbach的就Dinkelbach.
复杂度
时间 O( O(MST) * log max(r) )
空间 O( O(MST) )
C++代码
二分法
/*
*@Author: Agnel-Cynthia
*@Language: C++
*/
//#include <bits/stdc++.h>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<string>
#include<vector>
#include<bitset>
#include<queue>
#include<deque>
#include<stack>
#include<cmath>
#include<list>
#include<map>
#include<set>
//#define DEBUG
#define RI register int
#define endl "\n"
using namespace std;
typedef long long ll;
//typedef __int128 lll;
const int N=+;
const int M=+;
const int MOD=1e9+;
const double PI = acos(-1.0);
const double EXP = 1E-;
const int INF = 0x3f3f3f3f;
//int t,n,m,k,p,l,r,u,v;
const int maxn = ;
//ll a[maxn],b[maxn]; struct node
{
int x , y ,z ;
}edge[maxn]; int n ; double mp[maxn][maxn]; double dis(double x1 ,double y1,double x2,double y2){
return sqrt(1.0*(x1-x2) * (x1 - x2) + 1.0 * (y1 - y2) * (y1 - y2));
} void creat(){
for(int i = ;i <= n ;i ++){
for(int j = ;j <= n ; j++){
mp[i][j] = dis(edge[i].x,edge[i].y,edge[j].x,edge[j].y);
}
}
} double d[maxn];
bool vis[maxn]; double prime(double mid){
memset(vis,,sizeof vis);
for(int i = ;i <= n ; i++){
d[i] = abs(edge[].z - edge[i].z) - mp[][i] * mid;
}
vis[] = true;
double ans = ;
for(int i = ;i < n ; i++){
int v = -;double MIN = INF;
for(int j = ;j <= n ; j++){
if(MIN >= d[j] && !vis[j]){
v = j;
MIN = d[j];
}
}
if(v == -)
break;
vis[v] = true;
ans += MIN;
for(int j = ;j <= n ; j++){
if(!vis[j] && (fabs(edge[v].z - edge[j].z) - mp[v][j] * mid) < d[j])
d[j] = (fabs(edge[v].z - edge[j].z) - mp[v][j] * mid);
}
}
return ans ;
} int main()
{
#ifdef DEBUG
freopen("input.in", "r", stdin);
//freopen("output.out", "w", stdout);
#endif
// ios::sync_with_stdio(false);
// cin.tie(0);
// cout.tie(0);
while(cin >> n && n){
for(int i = ;i <= n ; i++){
cin >> edge[i].x >> edge[i].y >> edge[i].z;
}
double l = , r = 40.0;
double mid = ;
creat();
while(fabs(r - l) > EXP){
mid = (l + r) / ;
if(prime(mid) >= )
l = mid;
else
r = mid;
}
printf("%.3lf\n",mid );
}
#ifdef DEBUG
printf("Time cost : %lf s\n",(double)clock()/CLOCKS_PER_SEC);
#endif
//cout << "Hello world!" << endl;
return ;
}
Dinkelbach
/*
*@Author: Agnel-Cynthia
*@Language: C++
*/
//#include <bits/stdc++.h>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<string>
#include<vector>
#include<bitset>
#include<queue>
#include<deque>
#include<stack>
#include<cmath>
#include<list>
#include<map>
#include<set>
//#define DEBUG
#define RI register int
#define endl "\n"
using namespace std;
typedef long long ll;
//typedef __int128 lll;
const int N=+;
const int M=+;
const int MOD=1e9+;
const double PI = acos(-1.0);
const double EXP = 1E-;
const int INF = 0x3f3f3f3f;
//int t,n,m,k,p,l,r,u,v;
//ll a[maxn],b[maxn]; #define Rep(i,l,r) for(i=(l);i<=(r);i++)
#define rep(i,l,r) for(i=(l);i< (r);i++)
#define Rev(i,r,l) for(i=(r);i>=(l);i--)
#define rev(i,r,l) for(i=(r);i> (l);i--)
#define Each(i,v) for(i=v.begin();i!=v.end();i++)
#define r(x) read(x) int CH , NEG ;
template <typename TP>inline void read(TP& ret) {
ret = NEG = ; while (CH=getchar() , CH<'!') ;
if (CH == '-') NEG = true , CH = getchar() ;
while (ret = ret*+CH-'' , CH=getchar() , CH>'!') ;
if (NEG) ret = -ret ;
}
#define maxn 1010LL
#define infi 100000000LL
#define eps 1E-8F
#define sqr(x) ((x)*(x)) template <typename TP>inline bool MA(TP&a,const TP&b) { return a < b ? a = b, true : false; }
template <typename TP>inline bool MI(TP&a,const TP&b) { return a > b ? a = b, true : false; } int n;
int x[maxn], y[maxn], h[maxn];
double v[maxn][maxn], c[maxn][maxn]; bool vis[maxn];
double w[maxn];
double rv[maxn];///
inline double prim(double M) {
int i, j, k;
double minf, minw;
double sumc = , sumv = ;///
memset(vis,,sizeof vis);
Rep (i,,n) w[i] = v[][i]-M*c[][i],
rv[i] = v[][i];///
vis[] = true, minf = ;
rep (i,,n) {
minw = infi;
Rep (j,,n) if (!vis[j] && w[j]<minw)
minw = w[j], k = j;
sumv += rv[k], sumc += rv[k]-w[k];///
minf += minw, vis[k] = true;
Rep (j,,n) if (!vis[j])
if (MI(w[j],v[k][j]-M*c[k][j]))
rv[j] = v[k][j];///
}
return sumv*M/sumc;///
return minf;
} int main() {
int i, j;
double L, M, R;
double maxv, maxc, minv, minc;
while (scanf("%d", &n)!=EOF && n) {
Rep (i,,n)
scanf("%d%d%d", &x[i], &y[i], &h[i]);
maxv = maxc = -infi, minv = minc = infi;
rep (i,,n) Rep (j,i+,n) {
c[i][j] = c[j][i] = sqrt(sqr((double)x[i]-x[j])+sqr((double)y[i]-y[j]));
v[i][j] = v[j][i] = abs((double)h[i]-h[j]);
MA(maxv,v[i][j]), MI(minv,v[i][j]);
MA(maxc,c[i][j]), MI(minc,c[i][j]);
}
L = minv/maxc, R = maxv/minc;
while (true) {///
R = prim(L);///
if (fabs(L-R) < eps) break;///
L = R;///
}///
/*while (R-L > 1E-6) { // L:minf>0 R:minf<=0
M = (L+R)/2.0;
if (prim(M) > eps) L = M;
else R = M;
}*/
printf("%.3f\n", R);
}
//END: getchar(), getchar();
return ;
}
Desert King(01分数规划问题)(最优斜率生成树)的更多相关文章
- POJ 2728 Desert King 01分数规划,最优比率生成树
一个完全图,每两个点之间的cost是海拔差距的绝对值,长度是平面欧式距离, 让你找到一棵生成树,使得树边的的cost的和/距离的和,比例最小 然后就是最优比例生成树,也就是01规划裸题 看这一发:ht ...
- POJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)
[题意]每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树. 标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz ...
- POJ 2728 Desert King (01分数规划)
Desert King Time Limit: 3000MS Memory Limit: 65536K Total Submissions:29775 Accepted: 8192 Descr ...
- poj2728 Desert King——01分数规划
题目:http://poj.org/problem?id=2728 第一道01分数规划题!(其实也蛮简单的) 这题也可以用迭代做(但是不会),这里用了二分: 由于比较裸,不作过多说明了. 代码如下: ...
- 【POJ2728】Desert King - 01分数规划
Description David the Great has just become the king of a desert country. To win the respect of his ...
- poj2728 Desert King --- 01分数规划 二分水果。。
这题数据量较大.普通的求MST是会超时的. d[i]=cost[i]-ans*dis[0][i] 据此二分. 但此题用Dinkelbach迭代更好 #include<cstdio> #in ...
- POJ 2728 Desert King | 01分数规划
题目: http://poj.org/problem?id=2728 题解: 二分比率,然后每条边边权变成w-mid*dis,用prim跑最小生成树就行 #include<cstdio> ...
- 【POJ2728】Desert King(分数规划)
[POJ2728]Desert King(分数规划) 题面 vjudge 翻译: 有\(n\)个点,每个点有一个坐标和高度 两点之间的费用是高度之差的绝对值 两点之间的距离就是欧几里得距离 求一棵生成 ...
- POJ 3621 Sightseeing Cows 01分数规划,最优比例环的问题
http://www.cnblogs.com/wally/p/3228171.html 题解请戳上面 然后对于01规划的总结 1:对于一个表,求最优比例 这种就是每个点位有benefit和cost,这 ...
- 【转】[Algorithm]01分数规划
因为搜索关于CFRound277.5E题的题解时发现了这篇文章,很多地方都有值得借鉴的东西,因此转了过来 原文:http://www.cnblogs.com/perseawe/archive/2012 ...
随机推荐
- node 中process进程argv,argv0,execArgv,execPath
1.argv const {argv,argv0,execPath v,execPath} = process; argv.forEach(item=>{ console.log(item); ...
- web项目重启命令
jps -lvm|grep "young_rd_10004" | awk '{print $1}'|xargs kill -9; sleep 3; /home/web_server ...
- BZOJ 4517: [Sdoi2016]排列计数 错排 + 组合
从 $n$ 个数中选 $m$ 个不错排,那就是说 $n-m$ 个数是错排的. 用组合数乘一下就好了. Code: #include <cstdio> #include <algori ...
- MongoDB基本操作(增删改查)
基本操作 基本的“增删查改“,在DOS环境下输入mongo命令打开shell,其实这个shell就是mongodb的客户端,同时也是一个js的编译器,默认连接的是“test”数据库.
- Android系统关机或重启的几种实现方式
前阵子工作上遇到一些关于Android系统关机或重启的系统修改,于是,做了一些尝试,也搜集了一下资料,现在整理一下,做一些总结,方便学习或者日后工作的需要. 默认的SDK并没有提供应用开发者直接的An ...
- (79)【按键】[独立按键] - 1: 单击,双击,三击以及N击
此按键程序的实现的功能是单个独立按键的[单击],[长按],[双击],[三击]以及[多击].本文分为三个部分, 第一个部分是说[单击],[长按]的程序: 第二部分是讲[双击]: 第三部分是讲[三击],[ ...
- 【转】毛虫算法——尺取法
转自http://www.myexception.cn/program/1839999.html 妹子满分~~~~ 毛毛虫算法--尺取法 有这么一类问题,需要在给的一组数据中找到不大于某一个上限的&q ...
- yii 1.1简单文件缓存
缓存组件配置在config\main.php文件,简单配置下文件缓存 'components'=>array( 'cache' => array( 'class' => 'syste ...
- pytorch之Resize()函数
Resize函数用于对PIL图像的预处理,它的包在: from torchvision.transforms import Compose, CenterCrop, ToTensor, Resize ...
- 使用tushare获取股票实时分笔数据延时有多大
使用tushare获取股票实时分笔数据延时有多大 前几天分享了一段获取所有股票实时数据的代码,有用户积极留言,提出一个非常棒的问题:如果数据本生的延时非常严重,通过代码获取数据再快又有什么用呢? 一直 ...