Luogu 4137 Rmq Problem / mex
一个主席树题。
一开始想着直接动态开点硬搞就可以了,每次查询只要作一个类似于前缀和的东西看看区间有没有满,在主席树上二分就可以了。
但是这样是错的,因为一个权值会出现很多次……然后就错了。
所以我们考虑记录每一个权值最后出现的位置,直接开权值下标记录每一个权值最后出现的位置,因为是区间查询,所以可持久化一下,这样答案就是第一次出现位置小于$l$的最小权值,查询方法类似。
考虑到答案只可能是$a_{i} + 1, 0$,所以直接大力把$a_{i}, a_{i} + 1,0$都丢进去离散化。
注意线段树中权值0出现的位置不是inf,因为0也算自然数。
感觉离线下来也可以不用写可持久化。
自己一开始还是naive
Code:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int N = 4e5 + ;
const int M = 5e6 + ;
const int inf = << ; int n, qn, tot = , a[N], b[N]; inline void read(int &X) {
X = ;
char ch = ;
int op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} inline int min(int x, int y) {
return x > y ? y : x;
} namespace PSegT {
struct Node {
int lc, rc, data;
} s[M]; int root[N], nodeCnt; #define mid ((l + r) >> 1) inline void up(int p) {
if(p) s[p].data = min(s[s[p].lc].data, s[s[p].rc].data);
} void ins(int &p, int l, int r, int x, int pre, int v) {
p = ++nodeCnt;
s[p].lc = s[pre].lc, s[p].rc = s[pre].rc;
if(l == r) {
s[p].data = v;
return;
} if(x <= mid) ins(s[p].lc, l, mid, x, s[pre].lc, v);
else ins(s[p].rc, mid + , r, x, s[pre].rc, v);
up(p);
} int query(int p, int l, int r, int x) {
if(!p || l == r) return b[l]; if(s[s[p].lc].data < x) return query(s[p].lc, l, mid, x);
else return query(s[p].rc, mid + , r, x);
} } using namespace PSegT; int main() {
read(n), read(qn);
b[++tot] = ;
for(int i = ; i <= n; i++) {
read(a[i]);
b[++tot] = a[i], b[++tot] = a[i] + ;
} sort(b + , b + tot + );
tot = unique(b + , b + + tot) - b - ;
root[] = nodeCnt = ; //s[0].data = inf;
for(int i = ; i <= n; i++) {
a[i] = lower_bound(b + , b + + tot, a[i]) - b;
ins(root[i], , tot, a[i], root[i - ], i);
} for(int x, y; qn--; ) {
read(x), read(y);
printf("%d\n", query(root[y], , tot, x));
}
return ;
}
Luogu 4137 Rmq Problem / mex的更多相关文章
- 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex
题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...
- Luogu P4137 Rmq Problem / mex
区间mex问题,可以使用经典的记录上一次位置之后再上主席树解决. 不过主席树好像不是很好写哈,那我们写莫队吧 考虑每一次维护什么东西,首先记一个答案,同时开一个数组记录一下每一个数出现的次数. 然后些 ...
- 【luogu P4137 Rmq Problem / mex】 题解
题目链接:https://www.luogu.org/problemnew/show/P4137 求区间内最大没出现过的自然数 在add时要先判断会不会对当前答案产生影响,如果有就去找下一个答案. # ...
- luogu P4137 Rmq Problem / mex 主席树 + 思维
Code: #include<bits/stdc++.h> #define maxn 200001 using namespace std; void setIO(string s) { ...
- 洛谷$P$4137 $Rmq\ Problem / mex$ 主席树
正解:主席树 解题报告: 传送门$QwQ$ 本来以为是道入门无脑板子题,,,然后康了眼数据范围发现并没有我想像的那么简单昂$kk$ 这时候看到$n$的范围不大,显然考虑离散化?但是又感觉似乎布星?因为 ...
- luogu P4137 Rmq Problem / mex(可持久化线段树)
一开始想的是莫队,然后维护几个bitset,然后瞎搞.脑子里想了想实现,发现并不好写. 还是主席树好写.我们维护一个权值的线段树,记录每一个权值的最后一次出现的位置下标.我们查询的时候要在前\(r\) ...
- [bzoj3585] Rmq Problem / mex
[bzoj3585] Rmq Problem / mex bzoj luogu 看上一篇博客吧,看完了这个也顺理成章会了( (没错这篇博客就是这么水) #include<cstdio> # ...
- 【Luogu4137】Rmq Problem/mex (莫队)
[Luogu4137]Rmq Problem/mex (莫队) 题面 洛谷 题解 裸的莫队 暴力跳\(ans\)就能\(AC\) 考虑复杂度有保证的做法 每次计算的时候把数字按照大小也分块 每次就枚举 ...
- P4137 Rmq Problem / mex (莫队)
题目 P4137 Rmq Problem / mex 解析 莫队算法维护mex, 往里添加数的时候,若添加的数等于\(mex\),\(mex\)就不能等于这个值了,就从这个数开始枚举找\(mex\): ...
随机推荐
- 《精通.NET企业项目开发》 - 书摘精要
(P7) 处于任何逻辑层面上的类,对于同一层面上的其他类应该是可重用的:对于在同等范围内其他所有需要该数据的类而言,提供数据的类应该是可以被调用的: (P9) 大多数企业系统都是用平台无关的技术构建的 ...
- Leetcode 974. Subarray Sums Divisible by K
前缀和(prefix sum/cumulative sum)的应用. 还用了一个知识点: a≡b(mod d) 则 a-b被d整除. 即:a与b对d同余,则a-b被d整除. class Solutio ...
- UVA - 1601 The Morning after Halloween (BFS/双向BFS/A*)
题目链接 挺有意思但是代码巨恶心的一道最短路搜索题. 因为图中的结点太多,应当首先考虑把隐式图转化成显式图,即对地图中可以相互连通的点之间连边,建立一个新图(由于每步不需要每个鬼都移动,所以每个点需要 ...
- java 实现树形结构
package tree; import java.awt.BorderLayout; import java.awt.Color; import java.awt.Font; import java ...
- NAT打洞
NAT(Network Address Translation)是一种广域网的接入技术,将私有地址转换为合法的公共IP地址,可以完美的解决IP地址不足问题,而且还能有效避免来自外部网络的攻击,隐藏并保 ...
- Day1--Python基础1--上半部分
一.第一个python程序 在linux下创建一个文件叫做hello.py,并输入 print "Hello World" 然后执行命令:python hello.py,输出 [r ...
- 机器学习:偏差方差权衡(Bias Variance Trade off)
一.什么是偏差和方差 偏差(Bias):结果偏离目标位置: 方差(Variance):数据的分布状态,数据分布越集中方差越低,越分散方差越高: 在机器学习中,实际要训练模型用来解决一个问题,问题本身可 ...
- spring容器启动的三种方式
一.在Web项目中,启动Spring容器的方式有三种,ContextLoaderListener.ContextLoadServlet.ContextLoaderPlugin. 1.1.监听器方式: ...
- Java-API-POI-Excel:XSSFWorkbook Documentation
ylbtech-Java-API-POI:XSSFWorkbook Documentation 1.返回顶部 1. org.apache.poi.xssf.usermodel Class XSSFWo ...
- Excel开发学习笔记:VB.net的一些杂项
遇到一个数据处理自动化的问题,于是打算开发一个基于excel的小工具.在业余时间一边自学一边实践,抽空把一些知识写下来以备今后参考,因为走的是盲人摸象的野路子,幼稚与错误请多包涵. 开发环境基于VST ...