洛谷P3038 牧草种植Grass Planting
思路:
首先,这道题的翻译是有问题的(起码现在是),查询的时候应该是查询某一条路径的权值,而不是某条边(坑死我了)。
与平常树链剖分题目不同的是,这道题目维护的是边权,而不是点权,那怎么办呢?好像有点棘手诶,这是一种非常经典的题型,我们可以发现,一个点最多只有一个父亲!!!那,我们显然就可以用这个点的点权去代替它与它父亲之间的边权!!!然后这道题不就成了树链剖分水题了嘛?刚开始边权都是\(0\),那我们就根据题目给的边建边权为\(0\)的边。
\(nonono\),还有一个坑点就是在路径查询和修改的时候,两点的\(LCA\)的点权是不能算在其中的,因为它的点权是\(LCA\)与\(LCA\)父亲之间边的边权,注意这几个问题,那这题就真的是水题了!
具体实现看代码:
#include<cstdio>
#include<algorithm>
#include<cctype>
#define maxn 100007
#define ls rt<<1
#define rs rt<<1|1
using namespace std;
int n,m,head[maxn],d[maxn],son[maxn],siz[maxn],id[maxn],w[maxn];
int num,cnt,sum[maxn<<2],lazy[maxn<<2],top[maxn],fa[maxn],a[maxn];
char s[3];
inline int qread() {
char c=getchar();int num=0,f=1;
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) num=num*10+c-'0';
return num*f;
}
struct node {
int v,w,nxt;
}e[maxn<<1];
inline void ct(int u, int v, int w) {
e[++num].v=v;
e[num].w=w;
e[num].nxt=head[u];
head[u]=num;
}
inline void pushup(int rt) {
sum[rt]=sum[ls]+sum[rs];
}
void build(int rt, int l, int r) {
if(l==r) {
sum[rt]=a[l];
return;
}
int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
pushup(rt);
}
inline void pushdown(int rt, int len) {
if(lazy[rt]) {
sum[ls]+=(len-(len>>1))*lazy[rt];
sum[rs]+=(len>>1)*lazy[rt];
lazy[ls]+=lazy[rt],lazy[rs]+=lazy[rt];
lazy[rt]=0;
}
}
void modify(int rt, int l, int r, int L, int R, int val) {
if(L>r||R<l) return;
if(L<=l&&r<=R) {
sum[rt]+=(r-l+1)*val;
lazy[rt]+=val;
return;
}
pushdown(rt,r-l+1);
int mid=(l+r)>>1;
modify(ls,l,mid,L,R,val),modify(rs,mid+1,r,L,R,val);
pushup(rt);
}
int csum(int rt, int l, int r, int L, int R) {
if(L>r||R<l) return 0;
if(L<=l&&r<=R) return sum[rt];
pushdown(rt,r-l+1);
int mid=(l+r)>>1;
return csum(ls,l,mid,L,R)+csum(rs,mid+1,r,L,R);
}
void dfs1(int u) {
siz[u]=1;
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;
if(v!=fa[u]) {
d[v]=d[u]+1;
fa[v]=u;
w[u]=e[i].w;
dfs1(v);
siz[u]+=siz[v];
if(siz[v]>siz[son[u]]) son[u]=v;
}
}
}
void dfs2(int u, int t) {
id[u]=++cnt;
top[u]=t;
a[cnt]=w[u];
if(son[u]) dfs2(son[u],t);
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;
if(v!=fa[u]&&v!=son[u]) dfs2(v,v);
}
}
void cal(int x, int y) {
int fx=top[x],fy=top[y];
while(fx!=fy) {
if(d[fx]<d[fy]) swap(x,y),swap(fx,fy);
modify(1,1,cnt,id[fx],id[x],1);
x=fa[fx],fx=top[x];
}
if(id[x]>id[y]) swap(x,y);
modify(1,1,cnt,id[x]+1,id[y],1);
}
int query(int x, int y) {
int fx=top[x],fy=top[y],ans=0;
while(fx!=fy) {
if(d[fx]<d[fy]) swap(x,y),swap(fx,fy);
ans+=csum(1,1,cnt,id[fx],id[x]);
x=fa[fx],fx=top[x];
}
if(id[x]>id[y]) swap(x,y);
ans+=csum(1,1,cnt,id[x]+1,id[y]);
return ans;
}
int main() {
n=qread(),m=qread();
for(int i=1,u,v;i<n;++i) {
u=qread(),v=qread();
ct(u,v,0);ct(v,u,0);
}
dfs1(1);dfs2(1,1);build(1,1,n);
for(int i=1,u,v;i<=m;++i) {
scanf("%s",s);
u=qread(),v=qread();
if(s[0]=='P') cal(u,v);
else printf("%d\n",query(u,v));
}
return 0;
}
洛谷P3038 牧草种植Grass Planting的更多相关文章
- 洛谷P3038 牧草种植 [树链剖分]
题目传送门 牧草种植 题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirec ...
- 洛谷P3038 [USACO11DEC]牧草种植Grass Planting
题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...
- AC日记——[USACO11DEC]牧草种植Grass Planting 洛谷 P3038
题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...
- 洛谷 P3038 [USACO11DEC]牧草种植Grass Planting
题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...
- 洛谷 P3038 [USACO11DEC]牧草种植Grass Planting(树链剖分)
题解:仍然是无脑树剖,要注意一下边权,然而这种没有初始边权的题目其实和点权也没什么区别了 代码如下: #include<cstdio> #include<vector> #in ...
- P3038 [USACO11DEC]牧草种植Grass Planting
题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...
- 树链剖分【p3038】[USACO11DEC]牧草种植Grass Planting
表示看不太清. 概括题意 树上维护区间修改与区间和查询. 很明显树剖裸题,切掉,细节处错误T了好久 TAT 代码 #include<cstdio> #include<cstdlib& ...
- [USACO11DEC]牧草种植Grass Planting
图很丑.明显的树链剖分,需要的操作只有区间修改和区间查询.不过这里是边权,我们怎么把它转成点权呢?对于E(u,v),我们选其深度大的节点,把边权扔给它.因为这是树,所以每个点只有一个父亲,所以每个边权 ...
- 【LuoguP3038/[USACO11DEC]牧草种植Grass Planting】树链剖分+树状数组【树状数组的区间修改与区间查询】
模拟题,可以用树链剖分+线段树维护. 但是学了一个厉害的..树状数组的区间修改与区间查询.. 分割线里面的是转载的: ----------------------------------------- ...
随机推荐
- Agc012_E Camel and Oases
传送门 题目大意 坐标轴上有$n$个坐标,第$i$个坐标是$x_i$,初始你有一个容量$V$,当两个给定的坐标距离不超过$V$时,你可以从一个坐标到达另一个坐标,同时你还可以令$V=\lfloor \ ...
- HTTP 的若干问题
1 HTTP无状态协议和Connection:Keep-Alive容易犯的误区 HTTP无状态:无状态是指协议对于事务处理没有记忆能力,服务器不知道客户端是什么状态.从另一方面讲,打开一个服务器上的 ...
- Python-Redis的Set操作
集合为不重复的列表 无序集合 sadd(name,values):在name对应的集合中添加元素 smembers(name):获取name对应的集合的所有成员 127.0.0.1:6379> ...
- Mybaits整合Spring自动扫描 接口,Mybaits配置文件.xml文件和Dao实体类
1.转自:https://blog.csdn.net/u013802160/article/details/51815077 <?xml version="1.0" enco ...
- 安装Ruby On Rails时运行“gem install rails”没有反应怎么办?
这两天在我的mac机上安装Ruby On Rails,感觉很爽,似乎在使用一个Windows和Linux的结合体,要界面有界面,要命令行有命令行. 不过安装Ruby On Rails的过程中遇到一个问 ...
- 进击的菜鸟问题1(设置checkbox全选)
问题:设置页面标签属性时,常常使用jquery.attr("","");在设置checkbox属性时,会出现操作设置checkbox属性后,无法清除,导致第二次 ...
- ViewPageIndicator--仿网易的使用
仿微信(网易的界面) 第一步: AndroidManifest.xml 的配置 <?xml version="1.0" encoding="utf-8"? ...
- [hdu4960]Another OCD Patient(区间dp)
题意:给出n个数,把这n个数合成一个对称的集合.每个数只能合并一次. 解题关键:区间dp,dp[l][r]表示l-r区间内满足条件的最大值.vi是大于0的,所以可以直接双指针确定. 转移方程:$dp[ ...
- R:安装、导入各种包。
library和require都可以载入包,但二者存在区别. #在一个函数中,如果一个包不存在,执行到library将会停止执行,require则会继续执行.require将会根据包的存在与否返回tr ...
- 【jeasyui5】样式:调整页面显示的顶部菜单和左侧菜单
1.顶部菜单修改:修改index2.js里面的InitTopMenu方法,将icon +2 2.左侧菜单宽度调整: 修改index.html,加上width:170的定长 <!-- 左侧菜单 - ...