省选算法学习-回文自动机 && 回文树
前置知识
首先你得会manacher,并理解manacher为什么是对的(不用理解为什么它是$O(n)$,这个大概记住就好了,不过理解了更方便做$PAM$的题)
什么是回文自动机?
回文自动机(Palindrome Automaton),是一类有限状态自动机,能识别一个字符串的所有回文子串
它可简化构建出回文树
回文自动机的构造
网上资料很多,不拿出来一步步说了,说一下数组意义、放个板子
$len[u]$表示节点$u$代表的回文串的长度
$ch[u][c]$代表在$u$的回文串两端添加字符$c$得到的新回文串节点
$fail[u]$表示节点$u$的回文串的最长的回文后缀所在的节点
char s[300010];
int n;
//这个板子里面的num表示当前节点的回文串出现了几遍
namespace pam{
int fail[300010],num[300010],len[300010],ch[300010][26],last,cnt;
inline int newnode(int w){len[++cnt]=w;return cnt;}
void init(){
s[0]=-1;cnt=-1;fail[0]=1;last=0;
newnode(0);newnode(-1);//插入两个根节点,设置fail
}
inline int getfail(int cur,int pos){
while(s[pos-len[cur]-1]!=s[pos]) cur=fail[cur];//跳fail
return cur;
}
void insert(int x){
int c=(s[x]-'a'),cur=getfail(last,x);
if(!ch[cur][c]){//新建节点
int now=newnode(len[cur]+2);
fail[now]=ch[getfail(fail[cur],x)][c];
ch[cur][c]=now;
}
num[last=ch[cur][c]]++;
}
}
几个容易写错的点:
fail初始化的时候,如果多组数据并且在newnode里面初始化信息,那么在init的时候记得把fail放到newnode后面
插入的时候函数传进去的是位置
newnode是len[cur]+2不是+1
一些拓展
节点上
首先显然可以统计这个节点的回文串出现次数
统计次数的时候还要加上$fail$树上子树内的所有节点的出现次数
对于一类回文串拥有某个和其$fail$树有关的性质的题目,可以记录一个$trans$,和跳$fail$一样跳,最后用$bfs$来做$dp$或者递推
关于求最小回文串分解
这个问题是问可以把一个字符串分解成最少多少个回文串
解决的方法:
考虑一个显然的$dp$:$dp[i]=dp[j-1]+1 (s[i...j]=palindrome)$
记录一个$anc[u]$
如果$len[u]-len[fail[u]]==len[fail[u]]-len[fail[fail[u]]]$,那么$anc[u]=anc[fail[u]]$
否则$anc[u]=u$
对于$u$的所有跳上去的$anc$集合$S$,我们发现,这个集合中的元素构成一个等差数列,相邻的两项差代表一种从当前点前面递推到当前点的回文串长度
对于每个回文树节点记录$tmp[u]=min(tmp[i-len[anc[u]],tmp[fail[u]])$,然后用这个$tmp[u]+1$来更新当前节点的$dp$,然后$u=fail[anc[u]]$往上跳,直到到达根
证明网上有论文,这里放个代码
inline void insert(int x){
int c=s[x]-'a',cur=getfail(last,x);
val[x]=1e9;
if(!ch[cur][c]){
int now=newnode(len[cur]+2);
fail[now]=ch[getfail(fail[cur],x)][c];
ch[cur][c]=now;
anc[now]=((fail[now]>1&&len[now]-len[fail[now]]==len[fail[now]]-len[fail[fail[now]]])?anc[fail[now]]:now);
}
last=ch[cur][c];
for(cur=ch[cur][c];cur>1;cur=fail[anc[cur]]){
tval[cur]=val[x-len[anc[cur]]];
tpos[cur]=x-len[anc[cur]];
if(anc[cur]!=cur&&tval[fail[cur]]<tval[cur]) tval[cur]=tval[fail[cur]],tpos[cur]=tpos[fail[cur]];
if(val[x]>tval[cur]+1) val[x]=tval[cur]+1,pos[x]=tpos[cur];
}
}
省选算法学习-回文自动机 && 回文树的更多相关文章
- Palindromic Tree 回文自动机-回文树 例题+讲解
回文树,也叫回文自动机,是2014年被西伯利亚民族发明的,其功能如下: 1.求前缀字符串中的本质不同的回文串种类 2.求每个本质不同回文串的个数 3.以下标i为结尾的回文串个数/种类 4.每个本质不同 ...
- manacher算法学习(求最长回文子串长度)
Manacher总结 我的代码 学习:yyb luogu题目模板 xzy的模板 #include<iostream> #include<cstdlib> #include< ...
- 省选算法学习-数据结构-splay
于是乎,在丧心病狂的noip2017结束之后,我们很快就要迎来更加丧心病狂的省选了-_-|| 所以从写完上一篇博客开始到现在我一直深陷数据结构和网络流的漩涡不能自拔 今天终于想起来写博客(只是懒吧.. ...
- 省选算法学习-插头dp
插头dp?你说的是这个吗? 好吧显然不是...... 所谓插头dp,实际上是“基于连通性的状态压缩dp”的简称,最先出现在cdq的论文里面 本篇博客致力于通过几道小小的例题(大部分都比较浅显)来介绍一 ...
- 省选算法学习-BSGS与exBSGS与二次剩余
前置知识 扩展欧几里得,快速幂 都是很基础的东西 扩展欧几里得 说实话这个东西我学了好几遍都没有懂,最近终于搞明白,可以考场现推了,故放到这里来加深印象 翡蜀定理 方程$ax+by=gcd(a,b)$ ...
- 省选算法学习-dp优化-四边形不等式
嗯......四边形不等式的确长得像个四边形[雾] 我们在dp中,经常见到这样一类状态以及转移方程: 设$dp\left[i\right]\left[j\right]$表示闭区间$\left[i,j\ ...
- 算法学习——从bzoj2286开始的虚树学习生活
[原创]转载请标明原作者~ http://www.cnblogs.com/Acheing/ 题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2 ...
- 【算法学习】【洛谷】树链剖分 & P3384 【模板】树链剖分 P2146 软件包管理器
刚学的好玩算法,AC2题,非常开心. 其实很早就有教过,以前以为很难就没有学,现在发现其实很简单也很有用. 更重要的是我很好调试,两题都是几乎一遍过的. 介绍树链剖分前,先确保已经学会以下基本技巧: ...
- 数据结构和算法学习笔记十五:多路查找树(B树)
一.概念 1.多路查找树(multi-way search tree):所谓多路,即是指每个节点中存储的数据可以是多个,每个节点的子节点数也可以多于两个.使用多路查找树的意义在于有效降低树的深度,从而 ...
随机推荐
- LeetCode46. Permutations
Given a collection of distinct integers, return all possible permutations. Example: Input: [1,2,3] O ...
- udp回显客户端发送的数据
这里让客户端给服务端发送的数据被服务端自动发回来 客户端: import socket client_socket = socket.socket(socket.AF_INET, socket.SOC ...
- 设置vim tab为4个空格
Vim 编辑器默认tab为8个空格,但对于pythoner来说,必须要调整到4个空格. 方法如下: 在~/.vimrc文件中加入下面设置: set ts=4 #设置tabstop为4个空格 set e ...
- IntelliJ IDEA 12详细开发教程(一)思想的转变与新手入门【转】
转载地址:http://bangqu.com/alicas/blog/433 从事软件开发工作以来,提高自己的开发效率,提高自己编码的规范,提高编码深度层次,这三样一直都是自己努力去追求的事情. 最近 ...
- HTML5--定义区块
1.效果图如下: 备注: <article> 1.作用:用来表示文档.页面中独立的.完整的.可以独自被外部引用的内容 2.一般有个header元素,有时还有脚注 <article&g ...
- MyFirstDay_答案_1.**猫(自己整理)
1>***猫: python基础类: 字符串反转的常用处理方式: # 方法一:使用字符串切片 s = "hello python" result = s[::-1] prin ...
- 模块pandas
python之pandas简单介绍及使用(一) https://www.cnblogs.com/misswangxing/p/7903595.html
- 第三章 文件 I/O
3.1 引言 先说明可用的文件 I/O 函数:open.read.write.close,然后说明不同缓冲区长度对read和write函数的影响. 本章所说的函数经常被称为不带缓冲的 I/O (unb ...
- MongoDb第一天
安装之后进入cmd.进入到安装目录下的bin目录下. 任意选一个空目录,建立db,log的文件夹.之后终端命令行里面输入回车. D:\ProgramFiles\MongoDB\Server\3.6\b ...
- 开放定址法——平方探测(Quadratic Probing)
为了消除一次聚集,我们使用一种新的方法:平方探测法.顾名思义就是冲突函数F(i)是二次函数的探测方法.通常会选择f(i)=i2.和上次一样,把{89,18,49,58,69}插入到一个散列表中,这次用 ...