BZOJ3143 [Hnoi2013]游走 【高斯消元】
题目
一个无向连通图,顶点从1编号到N,边从1编号到M。
小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。
现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。
输入格式
第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1≤u,v≤N),表示顶点u与顶点v之间存在一条边。 输入保证30%的数据满足N≤10,100%的数据满足2≤N≤500且是一个无向简单连通图。
输出格式
仅包含一个实数,表示最小的期望值,保留3位小数。
输入样例
3 3
2 3
1 2
1 3
输出样例
3.333
解释
边(1,2)编号为1,边(1,3)编号2,边(2,3)编号为3。
题解
我们算出每个边的期望经过次数wi,按大到小分别赋1到M就是最优解
wi=xudegree[u]+xvdegree[v]
xi指每个点的经过次数
我们只要算出xi就可以了
对于每个点i,我们可以列出一个方程:
xi=∑j−>ijxjdegree[j]
N个方程,N个未知数,高斯消元可求解
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define eps 1e-9
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 505,maxm = 500005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int G[maxn][maxn],N,M,de[maxn];
double A[maxn][maxn],X[maxn];
struct EDGE{int a,b; double w;}e[maxm];
inline bool operator <(const EDGE& a,const EDGE& b){return a.w > b.w;}
void gauss(){
for (int i = 1; i <= N; i++){
double t = A[i][i];
if (fabs(t) < eps) continue;
for (int j = i; j <= N + 1; j++) A[i][j] /= t;
for (int j = i + 1; j <= N; j++){
t = A[j][i];
for (int k = i; k <= N + 1; k++)
A[j][k] -= A[i][k] * t;
}
}
for (int i = N; i > 0; i--){
for (int j = i + 1; j <= N; j++)
A[i][N + 1] -= X[j] * A[i][j];
X[i] = A[i][N + 1] / A[i][i];
}
}
int main(){
N = RD(); M = RD();
REP(i,M){
de[e[i].a = RD()]++; de[e[i].b = RD()]++;
G[e[i].a][e[i].b] = G[e[i].b][e[i].a] = true;
}
for (int i = 1; i < N; i++) A[i][i] = -1;
REP(i,M){
A[e[i].a][e[i].b] += 1.0 / de[e[i].b];
A[e[i].b][e[i].a] += 1.0 / de[e[i].a];
}
for (int i = 1; i <= N; i++) A[i][N + 1] = 0;
A[1][N + 1] = -1; A[N][N + 1] = 1; A[N][N] = 1;
gauss();
REP(i,M) e[i].w = X[e[i].a] / de[e[i].a] + X[e[i].b] / de[e[i].b];
sort(e + 1,e + 1 + M);
double ans = 0;
REP(i,M) ans += e[i].w * i;
printf("%.3lf",ans);
return 0;
}
BZOJ3143 [Hnoi2013]游走 【高斯消元】的更多相关文章
- BZOJ3143:[HNOI2013]游走(高斯消元)
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
- 【BZOJ-3143】游走 高斯消元 + 概率期望
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2264 Solved: 987[Submit][Status] ...
- bzoj 3143: [Hnoi2013]游走 高斯消元
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1026 Solved: 448[Submit][Status] ...
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- Luogu3232 HNOI2013 游走 高斯消元、期望、贪心
传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...
- [HNOI2013][BZOJ3143] 游走 - 高斯消元
题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边 ...
- 【BZOJ3143】【HNOI2013】游走 高斯消元
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3143 我们令$P_i$表示从第i号点出发的期望次数.则$P_n$显然为$0$. 对于$P ...
- 【xsy1201】 随机游走 高斯消元
题目大意:你有一个$n*m$的网格(有边界),你从$(1,1)$开始随机游走,求走到$(n,m)$的期望步数. 数据范围:$n≤10$,$m≤1000$. 我们令 $f[i][j]$表示从$(1,1) ...
- [BZOJ3143][HNOI2013]游走(期望+高斯消元)
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3576 Solved: 1608[Submit][Status ...
随机推荐
- 太阳地球月亮运行动画(使用@keyframes)
闲来无事的demo <!DOCTYPE html> <html> <head> <meta charset="utf-8"> < ...
- Mysql: pt-table-checksum 和 pt-table-sync 检查主从一致性,实验过程
一.安装 percona 包 1.安装仓库的包 https://www.percona.com/doc/percona-repo-config/yum-repo.html sudo yum insta ...
- 6-1 md5加密
1.导入hashlib模块,使用它的md5方法进行加密 import hashlib # import md5 python2 s = 'admin123' # .将字符串类型转换成byte类型才能加 ...
- zabbix运维监控平台
zabbix是一个基于WEB界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案. zabbix能监视各种网络参数,保证服务器系统的安全运营:并提供灵活的通知机制以让系统管理员快速定位/解决 ...
- centos7 php7 安装php扩展
yum install php70w.x86_64 php70w-cli.x86_64 php70w-common.x86_64 php70w-gd.x86_64 php70w-ldap.x86_64 ...
- 第4章 HDFS操作
目录 4.1 命令行操作 4.2 Java API操作 4.2.1 创建Java工程 4.2.2 读取数据 4.2.3 创建目录 4.2.4 创建文件 4.2.5 删除文件 4.2.6 遍历文件和目录 ...
- openwrt(一):openwrt源码下载及编译环境搭建
声明:从网上各位大神的博客学习,整理后记录,非原创. 注:请用非root用户来下载源码 导航: 1. openwrt编译环境搭建 2. openwrt源码下载 3. feeds更新 1. openwr ...
- [WorldFinal 2012E]Infiltration(dfs+图论)
Description 题意:给定一个点数为n的竞赛图,求图的最小支配集 n<=75 Solution 如果将竞赛图的一个点删去,这个图还是竞赛图 而竞赛图每个点相连的边数为(n-1),那么删去 ...
- tomcat7 配置 https安全访问
在apache-tomcat-7.0.33-windows-x64.zip配置https,结果在配置SSL时遇到一些问题 1.用JDK自带的keytool来生成私有密钥和自签发的证书,如下: keyt ...
- 《算法》C++代码 Dijkstra
单源最短路,复杂度是O(N²),堆优化的是O(NlogN).基本思想是贪心,每次都加入一个当前最近的点,可以证明每次当时最近的点就是当前最短的路径.因此,所有点都加入之后,起点到所有点的最短路径就都求 ...