题目

一个无向连通图,顶点从1编号到N,边从1编号到M。

小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。

现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。

输入格式

第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1≤u,v≤N),表示顶点u与顶点v之间存在一条边。 输入保证30%的数据满足N≤10,100%的数据满足2≤N≤500且是一个无向简单连通图。

输出格式

仅包含一个实数,表示最小的期望值,保留3位小数。

输入样例

3 3

2 3

1 2

1 3

输出样例

3.333

解释

边(1,2)编号为1,边(1,3)编号2,边(2,3)编号为3。

题解

我们算出每个边的期望经过次数wi,按大到小分别赋1到M就是最优解

wi=xudegree[u]+xvdegree[v]

xi指每个点的经过次数

我们只要算出xi就可以了

对于每个点i,我们可以列出一个方程:

xi=∑j−>ijxjdegree[j]

N个方程,N个未知数,高斯消元可求解

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define eps 1e-9
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 505,maxm = 500005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int G[maxn][maxn],N,M,de[maxn];
double A[maxn][maxn],X[maxn];
struct EDGE{int a,b; double w;}e[maxm];
inline bool operator <(const EDGE& a,const EDGE& b){return a.w > b.w;}
void gauss(){
for (int i = 1; i <= N; i++){
double t = A[i][i];
if (fabs(t) < eps) continue;
for (int j = i; j <= N + 1; j++) A[i][j] /= t;
for (int j = i + 1; j <= N; j++){
t = A[j][i];
for (int k = i; k <= N + 1; k++)
A[j][k] -= A[i][k] * t;
}
}
for (int i = N; i > 0; i--){
for (int j = i + 1; j <= N; j++)
A[i][N + 1] -= X[j] * A[i][j];
X[i] = A[i][N + 1] / A[i][i];
}
}
int main(){
N = RD(); M = RD();
REP(i,M){
de[e[i].a = RD()]++; de[e[i].b = RD()]++;
G[e[i].a][e[i].b] = G[e[i].b][e[i].a] = true;
}
for (int i = 1; i < N; i++) A[i][i] = -1;
REP(i,M){
A[e[i].a][e[i].b] += 1.0 / de[e[i].b];
A[e[i].b][e[i].a] += 1.0 / de[e[i].a];
}
for (int i = 1; i <= N; i++) A[i][N + 1] = 0;
A[1][N + 1] = -1; A[N][N + 1] = 1; A[N][N] = 1;
gauss();
REP(i,M) e[i].w = X[e[i].a] / de[e[i].a] + X[e[i].b] / de[e[i].b];
sort(e + 1,e + 1 + M);
double ans = 0;
REP(i,M) ans += e[i].w * i;
printf("%.3lf",ans);
return 0;
}

BZOJ3143 [Hnoi2013]游走 【高斯消元】的更多相关文章

  1. BZOJ3143:[HNOI2013]游走(高斯消元)

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  2. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  3. bzoj 3143: [Hnoi2013]游走 高斯消元

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1026  Solved: 448[Submit][Status] ...

  4. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  5. Luogu3232 HNOI2013 游走 高斯消元、期望、贪心

    传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...

  6. [HNOI2013][BZOJ3143] 游走 - 高斯消元

    题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边 ...

  7. 【BZOJ3143】【HNOI2013】游走 高斯消元

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3143 我们令$P_i$表示从第i号点出发的期望次数.则$P_n$显然为$0$. 对于$P ...

  8. 【xsy1201】 随机游走 高斯消元

    题目大意:你有一个$n*m$的网格(有边界),你从$(1,1)$开始随机游走,求走到$(n,m)$的期望步数. 数据范围:$n≤10$,$m≤1000$. 我们令 $f[i][j]$表示从$(1,1) ...

  9. [BZOJ3143][HNOI2013]游走(期望+高斯消元)

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3576  Solved: 1608[Submit][Status ...

随机推荐

  1. Centos7上搭建activemq集群和zookeeper集群

    Zookeeper集群的搭建 1.环境准备 Zookeeper版本:3.4.10. 三台服务器: IP 端口 通信端口 10.233.17.6 2181 2888,3888 10.233.17.7 2 ...

  2. 关于IT人的一些消遣区

    https://www.csdn.net/http://www.51cto.com/http://bestcbooks.com/http://www.jobbole.com/http://www.co ...

  3. php-5.6.26源代码 - opcode执行

    文件 php-5.6.26/Zend/zend_vm_execute.h ZEND_API void execute_ex(zend_execute_data *execute_data TSRMLS ...

  4. 从coding.net 克隆(git clone)项目代码到本地报无权限(403)错误 解决方案

    直接从coding.net (git clone)项目代码到本地时,会提示没有权限的错误,如下图: 解决方案:添加远程地址的时候带上用户名及密码即可解决,格式如下: git clone http:// ...

  5. C语言结构体指针成员强制类型转换

    #include <stdio.h> #include <stdlib.h> typedef struct ListElmt_ { void *data; struct Lis ...

  6. C语言指针篇(二)多级指针

        多级指针         多级指针常常使用于数组.这里仅仅介绍一下它长什么样,后文会再次详细对比使用.         多级指针呢,常见的有二级指针.见图.             二级指针的 ...

  7. 方法的重写(Override)与重载(Overload)的含义与区别

    1.Override(重写) 两同,两小,一大 两同:方法名相同,参数列表相同 两小:抛出的异常要小于等于父类,返回值类型要小于等于父类 一大:访问权限要大于等于父类 2.Overload(重载) 方 ...

  8. Android面试收集录8 HandlerThread详解

    1.前言 我们知道在Android系统中,我们执行完耗时操作都要另外开启子线程来执行,执行完线程以后线程会自动销毁. 想象一下如果我们在项目中经常要执行耗时操作,如果经常要开启线程,接着又销毁线程, ...

  9. Linux 安装github并配置ssh

    首先,你得有个github帐号. 1.用apt-get install git的方式安装git test@er:/$ sudo add-apt-repository ppa:git-core/ppa ...

  10. 14,vue+uwsgi+nginx部署路飞学城

    有一天,老男孩的苑日天给我发来了两个神秘代码,听说是和mjj的结晶 超哥将这两个代码,放到了一个网站上,大家可以自行下载 路飞学城django代码 https://files.cnblogs.com/ ...