NOIP2013 货车运输(最大生成树,倍增)
NOIP2013 货车运输(最大生成树,倍增)
A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。n=1e4,m=5e4.
首先肯定是跑一个最大生成数辣~跑完以后倍增lca即可。注意kruskal的写法,并查集一定要写对!
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=1e4+5, maxm=5e4+5, INF=1e9;
struct Edge{
int fr, to, next, v;
}e[2*maxn], e1[2*maxm];
bool cmp(const Edge &a, const Edge &b){ return a.v>b.v; }
int cnte, fir[maxn];
void addedge(int x, int y, int v){
Edge &ed=e[++cnte];
ed.to=y; ed.next=fir[x]; ed.v=v; fir[x]=cnte;
}
int fa[maxn];
int find(int x){ return fa[x]==x?x:fa[x]=find(fa[x]); }
int f[maxn][17], v[maxn][17]; //f表示不包括自己,上面第2^i个结点,v表示从i开始这个路径的权值
int dep[maxn];
void dfs(int now, int par, int val){ //当前结点 父亲结点 父亲连边的值
f[now][0]=par; v[now][0]=val; dep[now]=dep[par]+1;
for (int i=1; i<17; ++i){
f[now][i]=f[f[now][i-1]][i-1];
v[now][i]=min(v[now][i-1], v[f[now][i-1]][i-1]);
}
for (int i=fir[now]; i; i=e[i].next){
if (e[i].to==par) continue;
dfs(e[i].to, now, e[i].v);
}
}
int n, m, q;
int solve(int x, int y){
if (dep[x]<dep[y]) swap(x, y); int ans=INF;
for (int i=16; i>=0; --i)
if (dep[f[x][i]]>=dep[y]) ans=min(ans, v[x][i]), x=f[x][i];
for (int i=16; i>=0; --i)
if (f[x][i]!=f[y][i]) ans=min(ans, min(v[x][i], v[y][i])), x=f[x][i], y=f[y][i];
if (x!=y) ans=min(ans, min(v[x][0], v[y][0])); //一定要注意两个点是祖孙关系的情况!
return ans;
}
int main(){
scanf("%d%d", &n, &m); int t1, t2, t3;
for (int i=0; i<m; ++i){
scanf("%d%d%d", &t1, &t2, &t3);
e1[i].fr=t1; e1[i].to=t2; e1[i].v=t3;
}
sort(e1, e1+m, cmp);
for (int i=1; i<=n; ++i) fa[i]=i;
for (int i=0; i<m; ++i){ //直接把边都跑一遍就行了!
if (find(e1[i].fr)==find(e1[i].to)) continue;
addedge(e1[i].fr, e1[i].to, e1[i].v);
addedge(e1[i].to, e1[i].fr, e1[i].v);
fa[find(e1[i].fr)]=find(e1[i].to);
}
for (int i=1; i<=n; ++i) if (fa[i]==i) dfs(i, 0, 0); //分成许多个子树
scanf("%d", &q);
for (int i=0; i<q; ++i){
scanf("%d%d", &t1, &t2);
if (find(t1)!=find(t2)){ puts("-1"); continue; }
printf("%d\n", solve(t1, t2));
}
return 0;
}
NOIP2013 货车运输(最大生成树,倍增)的更多相关文章
- $Noip2013/Luogu1967$ 货车运输 最大生成树+倍增$lca$
$Luogu$ $Sol$ 首先当然是构建一棵最大生成树,然后对于一辆货车的起点和终点倍增跑$lca$更新答案就好.记得预处理倍增的时候不仅要处理走了$2^i$步后是那个点,还有这中间经过的路径权值的 ...
- 【NOIP2013】货车运输 最大生成树+倍增
题目大意:给你一张n个点m条边的图,有q次询问,每次让你找出一条从x至y的路径,使得路径上经过的边的最小值最大,输出这个最大的最小值. 显然,经过的路径必然在这张图的最大生成树上. 我们求出这个图的最 ...
- Luogu1967 NOIP2013 货车运输 最大生成树、倍增
传送门 题意:给出一个$N$个节点.$M$条边的图,$Q$次询问,每一次询问两个点之间的所有可行路径中经过的边的边权的最小值中的最大值.$N \leq 10000 , M \leq 50000 , Q ...
- TZOJ 4848 货车运输(最大生成树+倍增lca)
描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多 ...
- [noip2013]货车运输(kruskal + 树上倍增)
描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多 ...
- [Luogu 1967] NOIP2013 货车运输
[Luogu 1967] NOIP2013 货车运输 一年多前令我十分头大的老题终于可以随手切掉了- 然而我这码风又变毒瘤了,我也很绝望. 看着一年前不带类不加空格不空行的清纯码风啊,时光也好像回去了 ...
- NOIP2013 货车运输 (最大生成树+树上倍增LCA)
死磕一道题,中间发现倍增还是掌握的不熟 ,而且深刻理解:SB错误毁一生,憋了近2个小时才调对,不过还好一遍AC省了更多的事,不然我一定会疯掉的... 3287 货车运输 2013年NOIP全国联赛提高 ...
- NOIP2013 货车运输
3.货车运输 (truck.cpp/c/pas) [问题描述] A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货 ...
- Codevs3278[NOIP2013]货车运输
3287 货车运输 2013年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description A 国有 ...
随机推荐
- 机器学习:集成学习(Ada Boosting 和 Gradient Boosting)
一.集成学习的思路 共 3 种思路: Bagging:独立的集成多个模型,每个模型有一定的差异,最终综合有差异的模型的结果,获得学习的最终的结果: Boosting(增强集成学习):集成多个模型,每个 ...
- 机器学习:SVM(scikit-learn 中的 SVM:LinearSVC)
一.基础理解 Hard Margin SVM 和 Soft Margin SVM 都是解决线性分类问题,无论是线性可分的问题,还是线性不可分的问题: 和 kNN 算法一样,使用 SVM 算法前,要对数 ...
- Task用法(2)-任务等待wait
1.Wait 用法 默认情况下,Task 是有线程池中的异步线程执行,是否执行完成,可以通过Task的的属性IsCompleted 来判断, 如果想在子线程工作完成之后,在进行后续主线程工作可以 ...
- [更新中]【fit-flow使用总结】djang开发中git flow使用总结
djang开发中git flow使用总结 初次接触可以先看看此链接上关于git flow的东西http://danielkummer.github.io/git-flow-cheatsheet/ind ...
- Python垃圾回收机制:gc模块
在Python中,为了解决内存泄露问题,采用了对象引用计数,并基于引用计数实现自动垃圾回收. 由于Python 有了自动垃圾回收功能,就造成了不少初学者误认为不必再受内存泄漏的骚扰了.但如果仔细查看一 ...
- 问题:oracle select into;结果:oracle SELECT INTO 和 INSERT INTO SELECT 两种表复制语句详解
oracle SELECT INTO 和 INSERT INTO SELECT 两种表复制语句详解 (2011-07-08 08:59:47) 转载▼ 标签: it 分类: oracle 我们经常会遇 ...
- LAMP 2.2 Apache配置静态缓存
这里的静态文件指的是图片.js.css 等文件,用户访问一个站点,其实大多数元素都是图片.js.css 等,这些静态文件其实是会被客户端的浏览器缓存到本地电脑上的,目的就是为了下次再请求时不再去服务器 ...
- CentOS和Ubuntu系统下安装vsftp(助推大数据部署搭建)
不多说,直接上干货! 同时,声明,我这里安装的vsftp,仅仅只为我的大数据着想,关于网上的复杂安装,那是服务和运维那块.我不多牵扯,也不多赘述. 一.CentOS系统里安装vsftp 第一步:使用y ...
- tornado带签名的cookie原理
- linux ORACLE备份还原(EXP\IMP)
一.Oracle导入导出 1.Oracle的备份是Oracle操作中常见的工作,常见的备份方案有:逻辑备份(IMP&EXP命令进行备份).物理文件备份(脱机及联机备份).利用RMAN(Reco ...