之前已经装过一次了,不过没有做记录,现在又要翻一堆博客安装,长点记性,自己记录下。

环境 ubuntu16.04  python2.7

商家送过来时候已经装好了显卡驱动,所以省去了一大麻烦。

剩下的就是安装cuda和cudnn。

显卡驱动与cuda版本是有对应关系的,官网上贴出的匹配表

我的显卡驱动是384.130,与cuda8对应,于是下载cuda8,官网进去后就是cuda10,旧版本的地址 https://developer.nvidia.com/cuda-toolkit-archive

下载好后,一路回车,然后在是否安装显卡驱动时输入no,因为显卡驱动已经有了,选yes会被覆盖掉。

安装的默认路径是/usr/local/cuda-8.0,我们需要手动添加该路径到环境中,如下

$ sudo gedit ~/.bashrc

然后在后面添加两行

export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}}

export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

另外在profile中也要添加上面两行

$ sudo gedit /etc/profile

重启一下,输入nvcc -V

输出如下

nvcc: NVIDIA (R) Cuda compiler driver

Copyright (c) 2005-2016 NVIDIA Corporation

Built on Tue_Jan_10_13:22:03_CST_2017

Cuda compilation tools, release 8.0, V8.0.61

此时,cuda已经装好了,接下来安装cudnn.

cudnn的版本与cuda也是有对应关系的,如下

看到网上的教程中cuda8与cudnn6搭配的比较多,于是我采用cudnn6.

下载cudnn需要注册帐号,挺麻烦的,看到有一个博客中直接用wget下载,试了一下,速度飞快,还省去了注册帐号的麻烦。

wget http://developer.download.nvidia.com/compute/redist/cudnn/v6.0/cudnn-8.0-linux-x64-v6.0.tgz

然后需要解压,并将头文件和动态链接库复制到cuda路径中,

$ tar -zxvf cudnn-8.0-linux-x64-v6.0.tgz

$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include/

$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/

$ sudo chmod a+r /usr/local/cuda/include/cudnn.h

$ sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

有好多教程最后要创建软链接,我没有创建,直接安装了tensorflow-gpu

pip install tensorflow-gpu

默认安装的是1.12,版本应该是高了,结果需要cuda9,于是卸载了,重新安装1.3

pip install tensorflow-gpu==1.3

用python测试了一下,输出如下

Python 2.7.12 (default, Nov 12 2018, 14:36:49)

[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> tf.Session()
2018-11-20 00:34:37.313431: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2018-11-20 00:34:37.313493: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2018-11-20 00:34:37.313515: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2018-11-20 00:34:37.313538: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2018-11-20 00:34:37.313559: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
2018-11-20 00:34:37.467953: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:893] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2018-11-20 00:34:37.468324: I tensorflow/core/common_runtime/gpu/gpu_device.cc:955] Found device 0 with properties:
name: GeForce GTX 1080 Ti
major: 6 minor: 1 memoryClockRate (GHz) 1.582
pciBusID 0000:01:00.0
Total memory: 10.91GiB
Free memory: 10.54GiB
2018-11-20 00:34:37.468342: I tensorflow/core/common_runtime/gpu/gpu_device.cc:976] DMA: 0
2018-11-20 00:34:37.468348: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 0:   Y
2018-11-20 00:34:37.468355: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0)
<tensorflow.python.client.session.Session object at 0x7f93d7d96250>
一切正常,安装成功。 参考资料
https://blog.csdn.net/weixin_41864878/article/details/79621210
https://www.cnblogs.com/wmxfd/p/installation_of_nvidia_graphics_driver_and_cuda8_and_cudnn6.html
https://blog.csdn.net/qq_34057614/article/details/81228746
https://blog.csdn.net/xiangxianghehe/article/details/79177833
https://blog.csdn.net/qq_38522539/article/details/80678412
https://www.cnblogs.com/chay/p/8038251.html#_label3
https://blog.csdn.net/zong596568821xp/article/details/80410416
https://blog.csdn.net/twt520ly/article/details/79415787
 
 



记录下自己安装cuda以及cudnn的更多相关文章

  1. win10 安装cuda和cudnn

    首先通过nvidia-smi 查看自己的显卡驱动对应的cuda版本. 参考:https://blog.csdn.net/qq_40212975/article/details/89963016 再去官 ...

  2. Ubuntu安装CUDA、CUDNN比较有用的网址总结

    Ubuntu安装CUDA.CUDNN比较有用的网址总结 1.tensorflow各个版本所对应的的系统要求和CUDA\CUDNN适配版本 https://tensorflow.google.cn/in ...

  3. 安装CUDA和cuDNN

    GPU和CPU区别 1,CPU主要用于处理通用逻辑,以及各种中断事物 2,GPU主要用于计算密集型程序,可并行运作: NVIDIA 的 GeForce 显示卡系列采用 GPU 特性进行快速计算,渲染电 ...

  4. 【tf.keras】Linux 非 root 用户安装 CUDA 和 cuDNN

    TensorFlow 2.0 for Linux 使用时报错:(cuDNN 版本低了) E tensorflow/stream_executor/cuda/cuda_dnn.cc:319] Loade ...

  5. 非root用户安装cuda和cudnn

    1.根据自己的系统在官网下载cuda (选择runfile(local)) https://developer.nvidia.com/cuda-downloads 2.进入下载目录,并执行 sh cu ...

  6. Anaconda--在虚拟环境中安装CUDA and cudnn

    在conda虚拟环境中安装CUDAconda install cudatoolkit=8.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs ...

  7. ubuntu 安装 CUDA、 cuDNN 的tips

    CUDA 查看驱动兼容性:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html 查看GCC 与CUDA 驱动版本的兼容性 ...

  8. ubuntu安装cuda、cudnn

    环境: Ubuntu 16.04.4 LTS CUDA:8.0 CUDNN:5.1 CUDA下载:https://developer.nvidia.com/cuda-80-ga2-download-a ...

  9. Ubuntu16.04 安装Tensorflow1.7过程记录二:安装CUDA及Tensorflow

    参考 How to install Tensorflow 1.7.0 using official pip package 其中的CUDNN应该改为7.05for CUDA9.0 后面安装的spyde ...

随机推荐

  1. C#调用带返回值的存储过程

    ()在SQL Server中建立如下的存储过程: set ANSI_NULLS ON set QUOTED_IDENTIFIER ON GO CREATE PROCEDURE [dbo].[GetNa ...

  2. 安装zabbix-agent报错 Error: failure: repodata/primary.xml.gz from zabbix: [Errno 256] No more mirrors to try.

    安装zabbix-agent报错 yum install -y zabbix-agent Loaded plugins: fastestmirror, refresh-packagekit, secu ...

  3. apache2不识别php

    sudo apt-get install libapache2-mod-php7.0 sudo a2enmod php7.0 sudo service apache2 restart 注意:Apach ...

  4. 百度地图SDK v2.1.2使用方法

    1.开发工具 Android开发工具有很多,开发者可根据自己的喜好进行选择.在此,我们推荐开发者使用Eclipse作为自己的开发工具,本套开发指南也是针对Eclipse开发环境下进行编写的. 2.工程 ...

  5. 基本的数据类型 void关键字 都存在类类型

  6. [poj3159]Candies(差分约束+链式前向星dijkstra模板)

    题意:n个人,m个信息,每行的信息是3个数字,A,B,C,表示B比A多出来的糖果不超过C个,问你,n号人最多比1号人多几个糖果 解题关键:差分约束系统转化为最短路,B-A>=C,建有向边即可,与 ...

  7. css自动换行 word-break:break-all和word-wrap:break-word(转)

    css自动换行 word-break:break-all和word-wrap:break-word 2012-12-31 17:30 by greenal, 159 阅读, 0 评论, 收藏, 编辑 ...

  8. Tensorflow递归神经网络学习练习

    import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #载入数据集mnist = inpu ...

  9. Opencv Laplacian(拉普拉斯算子)

    #include <iostream>#include <opencv2/opencv.hpp>#include <math.h> using namespace ...

  10. linux中的管道命令

    很有用的一个命令,用法如下: A | B 是把A命令的输出作为B命令的输入. 比如我想查看一下我在终端输入过的命令,可以这样: history | less