不多说,直接上干货!

  Storm核心组件

  了解 Storm 的核心组件对于理解 Storm 原理非常重要,下面介绍 Storm 的整体,然后介绍 Storm 的核心。 Storm 集群由一个主节点和多个工作节点组成。主节点运行一个名为“Nimbus”的守护进程,工作节点都运行一个名为“Supervisor”的守护进程,两者的协调工作由 ZooKeeper 来完成, ZooKeeper 用于管理集群中的不同组件。
  每一个工作节点上运行的 Supervisor 监听分配给它那台机器的工作,根据需要启动 / 关闭工作进程,每一个工作进程执行一个 Topology 的一个子集;一个运行的 Topology 由运行在很多机器上的很多工作进程 Worker 组成。那么 Storm 的核心就是主节点(Nimbus)、工作节点(Supervisor)、协调器(ZooKeeper)、工作进程( Worker)、任务线程(Task)。

1、主节点 Nimbus
  主节点通常运行一个后台程序——Nimbus,用于响应分布在集群中的节点,分配任务和监测故障,这类似于 Hadoop 中的 JobTracker。
  Nimbus 进程是快速失败( fail-fast)和无状态的,所有的状态要么在 ZooKeeper 中,要么在本地磁盘上。可以使用 kill -9 来杀死 Nimbus 进程,然后重启即可继续工作。

2、工作节点 Supervisor
  工作节点同样会运行一个后台程序——Supervisor,用于收听工作指派并基于要求运行工作进程。每个工作节点都是Topology中一个子集的实现。而Nimbus 和 Supervisor 之间的协调则通过 ZooKeeper 系统。
  同 样,Supervisor进程也是快速失败(fail-fast)和无状态的, 所有的状态要么在ZooKeeper中,要么在本地磁盘上,用kill -9来杀死Supervisor进程,然后重启就可以继续工作。

3、协调服务组件 ZooKeeper
  ZooKeeper 是完成 Nimbus 和 Supervisor 之间协调的服务。 Storm使用ZooKeeper 协调集群,由于ZooKeeper 并不用于消息传递,所以Storm给ZooKeeper 带来的压力相当低。在大多数情况下,单个节点的 ZooKeeper 集群足够胜任,不过为了确保故障恢复或者部署大规模Storm集群,可能需要更大规模的 ZooKeeper 集群。 Nimbus、 Supervisor 与 ZooKeeper 的关系如图 1 所示。
            

               图 1    Nimbus、 Supervisor 与 ZooKeeper 关系图

4、其他核心组件
  Storm 的组件不止上面的,还有一些组件也是 Storm 的核心,缺一不可。下面简单介绍Worker 和 Task。
  1)具体处理事务进程 Worker:运行具体处理组件逻辑的进程。
  2)具体处理线程 Task : Worker 中的每一个 Spout/Bolt 线程称为一个 Task。在 Storm 0.8之后, Task 不再与物理线程对应,同一个 Spout/Bolt 的 Task 可能会共享一个物理线程,该线程称为 Executor

Storm概念学习系列之storm核心组件的更多相关文章

  1. Storm概念学习系列之storm的雪崩

    不多说,直接上干货! Storm的雪崩问题的解决办法1: Storm概念学习系列之并行度与如何提高storm的并行度 Storm的雪崩问题的解决办法2:

  2. Storm概念学习系列之storm流程图

    把stream当做一列火车, tuple当做车厢,spout当做始发站,bolt当做是中间站点!!! 见 Storm概念学习系列之Spout数据源 Storm概念学习系列之Topology拓扑 Sto ...

  3. Storm概念学习系列之storm的定时任务

    不多说,直接上干货! 至于为什么,有storm的定时任务.这个很简单.但是,这个在工作中非常重要! 假设有如下的业务场景 这个spoult源源不断地发送数据,boilt呢会进行处理.然后呢,处理后的结 ...

  4. Storm概念学习系列之storm的可靠性

    这个概念,对于理解storm很有必要. 1.worker进程死掉 worker是真实存在的.可以jps查看. 正是因为有了storm的可靠性,所以storm会重新启动一个新的worker进程. 2.s ...

  5. Storm概念学习系列之storm简介

    不多说,直接上干货! storm简介 Storm 是 Twitter 开源的.分布式的.容错的实时计算系统,遵循 Eclipse Public License1.0. Storm 通过简单的 API ...

  6. Storm概念学习系列之storm的功能和三大应用

    不多说,直接上干货! storm的功能 Storm 有许多应用领域:实时分析.在线机器学习.持续计算.分布式 RPC(远过程调用协议,一种通过网络从远程计算机程序上请求服务). ETL(Extract ...

  7. Storm概念学习系列之storm的特性

    不多说,直接上干货! storm的特性 Storm 是一个开源的分布式实时计算系统,可以简单.可靠地处理大量的数据流. Storm支持水平扩展,具有高容错性,保证每个消息都会得到处理,而且处理速度很快 ...

  8. Storm概念学习系列之Storm与Hadoop的角色和组件比较

    不多说,直接上干货! Storm与Hadoop的角色和组件比较 Storm 集群和 Hadoop 集群表面上看很类似.但是 Hadoop 上运行的是 MapReduce 作业,而在 Storm 上运行 ...

  9. Storm概念学习系列之storm的设计思想

    不多说,直接上干货! storm的设计思想 在 Storm 中也有对流(Stream)的抽象,流是一个不间断的.无界的连续 Tuple(Storm在建模事件流时,把流中的事件抽象为 Tuple 即元组 ...

随机推荐

  1. 游戏中的 2D 可见性

    转自:http://www.gameres.com/469173.html 拖动圆点转一圈,看看玩家都能看到些什么: 这个算法也能计算出给定光源所照亮的区域.对每条光线,我们可以构建出被照亮区域的光线 ...

  2. #np.random.normal,产生制定分布的数集(默认是标准正态分布)

    http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html #np.random.normal,产生制定分 ...

  3. Python数据结构与算法设计(总结篇)

    的确,正如偶像Bruce Eckel所说,"Life is short, you need Python"! 如果你正在考虑学Java还是Python的话,那就别想了,选Pytho ...

  4. python处理大文件——文件流处理

    最近处理一份1000G+的大文件,直接loading进内存不可能,只能分片读取.文件介绍如下: 该文件是一份压缩的比对后文件(sam文件),该文件由很多细小的结构单元组成,一个结构如下: 两种方法: ...

  5. VCF文件处理工具PyVCF

    vcf格式示例 ##fileformat=VCFv4.1 ##FILTER=<ID=LowQual,Description=”Low quality”> ##FORMAT=<ID=A ...

  6. 【机器学习】分类器组合——AdaBoost

    AdaBoost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器). AdaBoost其实只是boost的一个特 ...

  7. Linux下查看CPU使用率 --- top命令的使用

    在系统维护的过程中,随时可能有需要查看 CPU 使用率,并根据相应信息分析系统状况的需要.在 CentOS 中,可以通过 top 命令来查看 CPU 使用状况.运行 top 命令后,CPU 使用状态会 ...

  8. c++中的const关键字的理解

    看effective c++第二版推荐使用const,少用define.今天才发现发现这远远不够. #define定义的常量在预处理替换,debug的时候无法打印宏的,这种常量设置是有缺陷的, con ...

  9. idea中java项目删除一个module

    在idea中删除一个module,需要两步: 1. 使用Remove Module命令,快捷键是Delete 2. 经过第一步后,module图标上的小方块,消失,编程一个普通文件夹,这时使用Dele ...

  10. 【TMF eTOM】业务流程框架介绍

    TMF文档版权信息 Copyright © TeleManagement Forum 2013. All Rights Reserved. This document and translations ...