hdu-3449 Consumer---有依赖性质的背包
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=3449
题目大意:
fj打算去买一些东西,在那之前,他需要一些盒子去装他打算要买的不同的物品。每一个盒子有特定要装的东西(就是说如果他要买这些东西里的一个,他不得不先买一个盒子)。每一种物品都有自己的价值,现在FJ只有W元去购物,他打算用这些钱买价值最高的东西。
思路:
这是有依赖的背包,每件物品买之前必须买特定的盒子

所以先对每一个箱子进行01背包,保存可以凑出的所有的花费和该花费的最大价值,这是一组中的所有状态,且只能取一个或者不取,背包转化成分组背包,然后就可以做了。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std;
typedef pair<int, int> Pair ;
const int INF = 0x3f3f3f3f;
const int maxn = 1e5 + ;
int T, n, m, cases;
struct node
{
int price;
int num;
int price_sum;
int cost[], value[];
int dp[];
};
node a[];
int dp[maxn];
int main()
{
while(cin >> n >> m)
{
memset(dp, , sizeof(dp));
memset(a, , sizeof(a));
for(int i = ; i < n; i++)
{
scanf("%d%d", &a[i].price, &a[i].num);
a[i].price_sum = ;
for(int j = ; j < a[i].num; j++)
{
scanf("%d%d", &a[i].cost[j], &a[i].value[j]);
a[i].price_sum += a[i].cost[j];
}
}
for(int i = ; i < n; i++)//对,每个箱子预处理出所有可凑出的花费和该花费的最大价值
{
memset(a[i].dp, -, sizeof(a[i].dp));
a[i].dp[] = ;
for(int j = ; j < a[i].num; j++)
{
for(int k = a[i].price_sum; k >= a[i].cost[j]; k--)
if(a[i].dp[k - a[i].cost[j]] >= )a[i].dp[k] = max(a[i].dp[k], a[i].dp[k - a[i].cost[j]] + a[i].value[j]);
}/*
for(int j = 0; j <= a[i].price_sum; j++)
cout<<a[i].dp[j]<<" ";
cout<<endl;*/
}
for(int i = ; i < n; i++)//枚举每一个的箱子
{
vector<Pair>d;
for(int j = ; j <= a[i].price_sum; j++)//将该箱子的所有状态存下来
{
if(a[i].dp[j] > )
d.push_back(Pair(j + a[i].price, a[i].dp[j]));
}
for(int v = m; v >= ; v--)//枚举花费
{
for(int j = ; j < d.size(); j++)//枚举改组的状态
if(v >= d[j].first)
dp[v] = max(dp[v], dp[v - d[j].first] + d[j].second);
}
}
cout<<dp[m]<<endl;
}
return ;
}
还有一种写法,在dp的时候把预处理和状态转化合并起来,时间复杂度降低了一点
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std;
typedef pair<int, int> Pair ;
const int INF = 0x3f3f3f3f;
const int maxn = 1e5 + ;
int T, n, m, cases;
int a[];
int dp[][];
struct node
{
int v, w;
};
vector<node>G[];
int main()
{
while(cin >> n >> m)
{
memset(dp, , sizeof(dp));
for(int i = ; i <= n; i++)G[i].clear();
int tot, x, y;
for(int i = ; i <= n; i++)
{
scanf("%d%d", &a[i], &tot);
for(int j = ; j < tot; j++)
{
scanf("%d%d", &x, &y);
G[i].push_back(node{x, y});
}
} for(int i = ; i <= n; i++)//枚举每种箱子
{
for(int j = ; j < a[i]; j++)dp[i][j] = -;
for(int j = a[i]; j <= m; j++)dp[i][j] = dp[i - ][j - a[i]];//这里是确保先购买购物车 for(int j = ; j < G[i].size(); j++)//在购物车内进行01背包
{
for(int k = m; k >= G[i][j].v; k--)
{
if(dp[i][k - G[i][j].v] != -)
dp[i][k] = max(dp[i][k], dp[i][k - G[i][j].v] + G[i][j].w);
}
}
for(int j = ; j <= m; j++)dp[i][j] = max(dp[i - ][j], dp[i][j]);//和之前的值比较
}
cout<<dp[n][m]<<endl;
}
return ;
}
hdu-3449 Consumer---有依赖性质的背包的更多相关文章
- hdu 3449 Consumer (依赖01背包)
题目: 链接:pid=3449">点击打开链接 题意: 思路: dp[i][j]表示前i个箱子装j钱的材料可以得到的最大价值. 代码: #include<iostream> ...
- HDU 1561&HDU 3449 一类简单依赖背包问题
HDU 1561.这道是树形DP了,所谓依赖背包,就是选A前必须选B,这样的问题.1561很明显是这样的题了.把0点当成ROOT就好,然后选子节点前必须先选根,所以初始化数组每一行为该根点的值.由于多 ...
- HDU 3449 Consumer (背包问题之有依赖背包)
题目链接 Problem Description FJ is going to do some shopping, and before that, he needs some boxes to ca ...
- HDU 3449 Consumer
这是一道依赖背包问题.背包问题通常的解法都是由0/1背包拓展过来的,这道也不例外.我最初想到的做法是,由于有依赖关系,先对附件做个DP,得到1-w的附件背包结果f[i]表示i花费得到的最大收益,然后把 ...
- HDU 2159 FATE(二维费用背包)
FATE Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...
- HDU 1712 ACboy needs your help(包背包)
HDU 1712 ACboy needs your help(包背包) pid=1712">http://acm.hdu.edu.cn/showproblem.php? pid=171 ...
- 【MVVM Dev】多个具有依赖性质的ComboBox对数据的过滤
一.前言 在界面编程中,我们常常会遇到具有依赖性质的ComboBox框,比如最常见的: 省/直辖市 => 地级市/区 => 区/街道 今天就说一下在WPF的MVVM模式中如何实现该功能 二 ...
- HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包)
HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包) 题意分析 裸的完全背包问题 代码总览 #include <iostream> #include <cstdio> ...
- 洛谷 P1064 金明的预算方案【有依赖的分组背包】
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:"你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱 ...
随机推荐
- SElinux学习记录
1.SELinux:是一种基于域类型模型的强制访问控制安全系统,由NSA编写设计成内核模块包含到内核中,相应的某些安全相关的应用也被打了SE Linux补丁 查看Selinux: ps -Z #查看S ...
- java——抽象类、接口、二者区别
抽象类: 抽象方法:不包含方法体的方法为抽象方法,抽象方法必须使用abstract关键字来修饰: abstract void method(); 抽象类:当一个类中包含了抽象方法时,该类必须使用abs ...
- github 0 学习
Github 快速上手实战教程 一.实验介绍 1.1 实验内容 本次课程讲的是在实验楼的在线环境中,如何使用 Github 去管理在在线环境中使用的代码.配置.资源等实验相关文件,怎样去添加.同步和下 ...
- maya2013安装失败如何卸载重装
AUTODESK系列软件着实令人头疼,安装失败之后不能完全卸载!!!(比如maya,cad,3dsmax等).有时手动删除注册表重装之后还是会出现各种问题,每个版本的C++Runtime和.NET f ...
- 性能测试工具LoadRunner28-LR之内部数据参数类型
Date/Time 在“Parameter type”中您可以选择Date/Time,即:用当前的日期/时间替换参数.要指定日期/时间的格式,可以从格式列表中选择一个格式,或者指定您自己的格式. [l ...
- Murano Weekly Meeting 2015.09.22
Meeting time: 2015.September.22th 1:00~2:00 Chairperson: Serg Melikyan, PTL from Mirantis Meeting s ...
- tck/tl 以及expect脚本
最近有用到,利用expcet脚本自动登录到远程服务器并提权执行脚本. 搜集的知识如下: tcl/tk参考——列表操作lindex expect脚本解释 代码如下 #!/usr/bin/expect - ...
- IIS下不能下载文件的docx文档,XLSX文档的设置方法(转)
IIS下不能下载文件的docx文档,XLSX文档的设置方法 Office 2007的的界面风格默认格式中都是.DOCX,XLSX,PPTX等等后缀,连结中包含此类文件时,界面风格默认什么打不开的其实只 ...
- dll托管于非托管
托管的DLL组件可以在VS 直接添加引用,在使用using dll的文件命名空间就可以使用 非托管的DLL组件,只能通过using system.Runtime.InteropServices:引入 ...
- [转]开发中如何解决SQL注入的问题
Java防止SQL注入 SQL 注入简介: SQL注入是最常见的攻击方式之一,它不是利用操作系统或其它系统的漏洞来实现攻击的,而是程序员因为没有做好判断,被不法用户钻了SQL的空子,下面 ...