05-树9 Huffman Codes (30 分)
In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redundancy Codes", and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string "aaaxuaxz", we can observe that the frequencies of the characters 'a', 'x', 'u' and 'z' are 4, 2, 1 and 1, respectively. We may either encode the symbols as {'a'=0, 'x'=10, 'u'=110, 'z'=111}, or in another way as {'a'=1, 'x'=01, 'u'=001, 'z'=000}, both compress the string into 14 bits. Another set of code can be given as {'a'=0, 'x'=11, 'u'=100, 'z'=101}, but {'a'=0, 'x'=01, 'u'=011, 'z'=001} is NOT correct since "aaaxuaxz" and "aazuaxax" can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.
Input Specification:
Each input file contains one test case. For each case, the first line gives an integer N (2), then followed by a line that contains all the N distinct characters and their frequencies in the following format:
c[1] f[1] c[2] f[2] ... c[N] f[N]
where c[i]
is a character chosen from {'0' - '9', 'a' - 'z', 'A' - 'Z', '_'}, and f[i]
is the frequency of c[i]
and is an integer no more than 1000. The next line gives a positive integer M (≤), then followed by M student submissions. Each student submission consists of N lines, each in the format:
c[i] code[i]
where c[i]
is the i
-th character and code[i]
is an non-empty string of no more than 63 '0's and '1's.
Output Specification:
For each test case, print in each line either "Yes" if the student's submission is correct, or "No" if not.
Note: The optimal solution is not necessarily generated by Huffman algorithm. Any prefix code with code length being optimal is considered correct.
Sample Input:
7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11
Sample Output:
Yes
Yes
No
No
#include<iostream>
#include<cstring>
using namespace std;
#define maxn 70
int N,codelen,cnt1,cnt2,w[maxn];
char ch[maxn];
typedef struct TreeNode* Tree;
struct TreeNode{
int weight;
Tree Left,Right;
};
typedef struct HeapNode* Heap;
struct HeapNode{
struct TreeNode Data[maxn];
int size;
}; Tree creatTree(){
Tree T;
T = new struct TreeNode;
T->weight = ;
T->Left = T->Right = NULL;
return T;
} Heap creatHeap(){
Heap H;
H = new struct HeapNode;
H->Data[].weight = -;
H->size = ;
return H;
} void Insert(Heap H,struct TreeNode T){
int i = ++H->size;
for(; T.weight < H->Data[i/].weight; i /= )
H->Data[i] = H->Data[i/];
H->Data[i] = T;
} Tree Delete(Heap H){
int child,parent;
struct TreeNode Temp = H->Data[H->size--];
Tree T = creatTree();
*T = H->Data[];
for(parent = ; * parent <= H->size; parent = child){
child = * parent;
if(child < H->size && H->Data[child].weight > H->Data[child+].weight)
child++;
if(H->Data[child].weight > Temp.weight) break;
H->Data[parent] = H->Data[child];
}
H->Data[parent] = Temp;
return T;
} Tree Huffman(Heap H){
Tree T = creatTree();
while(H->size != ){
T->Left = Delete(H);
T->Right = Delete(H);
T->weight = T->Right->weight + T->Right->weight;
Insert(H,*T);
}
T = Delete(H);
return T;
} int WPL(Tree T,int depth){
if(!T->Left && !T->Right) return(depth*T->weight);
else return WPL(T->Left,depth+)+WPL(T->Right,depth+);
} void JudgeTree(Tree T){
if(T){
if(T->Right && T->Left) cnt2++;
else if(!T->Left && !T->Right) cnt1++;
else cnt1 = ;
JudgeTree(T->Left);
JudgeTree(T->Right);
}
} int Judge(){
int i,j,wgh,flag = ;;
char s1[maxn],s2[maxn];
Tree T = creatTree(), pt = NULL;
for(i = ; i < N; i++){
cin >> s1 >> s2;
if(strlen(s2) > N) return ;
for(j = ; s1[] != ch[j]; j++); wgh = w[j];
pt = T;
for(j = ; s2[j] ; j++){
if(s2[j] == ''){
if(!pt->Left) pt->Left = creatTree();
pt = pt->Left;
}
if(s2[j] == ''){
if(!pt->Right) pt->Right = creatTree();
pt = pt->Right;
}
if(pt->weight) flag = ;
if(!s2[j+]){
if(pt->Left || pt->Right) flag = ;
else pt->weight = wgh;
}
}
}
if(flag == ) return ;
cnt1 = cnt2 = ;
JudgeTree(T);
if(cnt1 != cnt2 + ) return ;
if(codelen == WPL(T,)) return ;
else return ;
} int main(){
int i,n;
Tree T;
Heap H;
T = creatTree();
H = creatHeap();
cin >> N;
for(i = ; i < N; i++){
getchar();
cin >> ch[i] >> w[i];
H->Data[H->size].Left = H->Data[H->size].Right = NULL;
T->weight = w[i];
Insert(H,*T);
}
T = Huffman(H);
codelen = WPL(T,);
cin >> n;
while(n--){
if(Judge()) cout<< "Yes" << endl;
else cout << "No" << endl;
}
return ;
}
05-树9 Huffman Codes (30 分)的更多相关文章
- pta5-9 Huffman Codes (30分)
5-9 Huffman Codes (30分) In 1953, David A. Huffman published his paper "A Method for the Const ...
- PTA 05-树9 Huffman Codes (30分)
题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/671 5-9 Huffman Codes (30分) In 1953, David ...
- 05-树9 Huffman Codes (30 分)
In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...
- pat树之专题(30分)
(好好复习是王道) 1115. Counting Nodes in a BST (30) 分析:简单题——将bst树构造出来,然后给每个节点打上高度.最后求出树的高度.然后count树高的节点数加上树 ...
- 05-树9 Huffman Codes (30 分)
In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...
- 05-树9 Huffman Codes(30 分)
In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...
- PAT 甲级1057 Stack (30 分)(不会,树状数组+二分)*****
1057 Stack (30 分) Stack is one of the most fundamental data structures, which is based on the prin ...
- Huffman codes
05-树9 Huffman Codes(30 分) In 1953, David A. Huffman published his paper "A Method for the Const ...
- PAT 甲级 1053 Path of Equal Weight (30 分)(dfs,vector内元素排序,有一小坑点)
1053 Path of Equal Weight (30 分) Given a non-empty tree with root R, and with weight Wi assigne ...
随机推荐
- 深入V8引擎-枚举+位运算实现参数配置
不知不觉都快月底了,看了看上一篇还是6号写的,惭愧惭愧,说好的坚持.为了证明没有偷懒(其实还是沉迷了一会dota2),先上一个图自证清白. 基本上从初始化引擎,到Isolate.handleScope ...
- Chrome Developer Tools之内存分析
可参考: Chrome Developer Tools之内存分析 http://www.kazaff.me/2014/01/26/chrome-developer-tools%E4%B9%8B%E5% ...
- BZOJ2733:[HNOI2012]永无乡
浅谈线段树合并:https://www.cnblogs.com/AKMer/p/10251001.html 题目传送门:https://lydsy.com/JudgeOnline/problem.ph ...
- nginx做代理部署WordPress
实验环境:CentOS7 服务器172.16.252.142做Nginx代理服务器: [root@conf.d localhost]#iptables -F [root@conf.d localhos ...
- linux命令-gzip压缩
把很大的目录/文件压缩成更小的文件,传输节省带宽,从服务端到客户端下载过程节省时间,减少带宽,节省使用率.使用cpu的资源. 压缩命令gzip [root@wangshaojun ~]# ls111. ...
- Zabbix_proxy的架设
一.安装zabbix-proxy与导入数据库 1. 安装 zabbix-server $ sudo rpm -ivh http://repo.zabbix.com/zabbix/3.0/rhel/7/ ...
- sharepoint 2013 创建母版页
一.创建新的母版页, 并添加了新的样式表 1.从CodePlex 上获得Starter Master Pages for SharePoint 2010 或复制以下母版代码 <%@Master ...
- 大富翁开发日记:一、使用巨型lua协程
一个大胆的尝试:使用巨型lua协程来表示整个“一局”流程. lua协程是一个很另类的功能,有并发的影子但又不是真的并发,所以真正拿它来做大功能框架的范例不多,通常用于一些小型trick式设计.但这次我 ...
- JAVA 框架 / SSM / SSM SPRING+SPING MVC + MYBATIS 三大框架整合详细步骤
http://how2j.cn/k/ssm/ssm-tutorial/1137.html
- IPv4 和 IPv6地址
目前Internet上使用的基本都是IPv4地址,也就是说地址总共是32个比特位,也就是32位二进制数. 所以IPv4地址总的容量是 2的32次方 = 4294967296 比如 11010010 ...