In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redundancy Codes", and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string "aaaxuaxz", we can observe that the frequencies of the characters 'a', 'x', 'u' and 'z' are 4, 2, 1 and 1, respectively. We may either encode the symbols as {'a'=0, 'x'=10, 'u'=110, 'z'=111}, or in another way as {'a'=1, 'x'=01, 'u'=001, 'z'=000}, both compress the string into 14 bits. Another set of code can be given as {'a'=0, 'x'=11, 'u'=100, 'z'=101}, but {'a'=0, 'x'=01, 'u'=011, 'z'=001} is NOT correct since "aaaxuaxz" and "aazuaxax" can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.

Input Specification:

Each input file contains one test case. For each case, the first line gives an integer N (2), then followed by a line that contains all the N distinct characters and their frequencies in the following format:

c[1] f[1] c[2] f[2] ... c[N] f[N]

where c[i] is a character chosen from {'0' - '9', 'a' - 'z', 'A' - 'Z', '_'}, and f[i] is the frequency of c[i] and is an integer no more than 1000. The next line gives a positive integer M (≤), then followed by M student submissions. Each student submission consists of N lines, each in the format:

c[i] code[i]

where c[i] is the i-th character and code[i] is an non-empty string of no more than 63 '0's and '1's.

Output Specification:

For each test case, print in each line either "Yes" if the student's submission is correct, or "No" if not.

Note: The optimal solution is not necessarily generated by Huffman algorithm. Any prefix code with code length being optimal is considered correct.

Sample Input:

7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11

Sample Output:

Yes
Yes
No
No
#include<iostream>
#include<cstring>
using namespace std;
#define maxn 70
int N,codelen,cnt1,cnt2,w[maxn];
char ch[maxn];
typedef struct TreeNode* Tree;
struct TreeNode{
int weight;
Tree Left,Right;
};
typedef struct HeapNode* Heap;
struct HeapNode{
struct TreeNode Data[maxn];
int size;
}; Tree creatTree(){
Tree T;
T = new struct TreeNode;
T->weight = ;
T->Left = T->Right = NULL;
return T;
} Heap creatHeap(){
Heap H;
H = new struct HeapNode;
H->Data[].weight = -;
H->size = ;
return H;
} void Insert(Heap H,struct TreeNode T){
int i = ++H->size;
for(; T.weight < H->Data[i/].weight; i /= )
H->Data[i] = H->Data[i/];
H->Data[i] = T;
} Tree Delete(Heap H){
int child,parent;
struct TreeNode Temp = H->Data[H->size--];
Tree T = creatTree();
*T = H->Data[];
for(parent = ; * parent <= H->size; parent = child){
child = * parent;
if(child < H->size && H->Data[child].weight > H->Data[child+].weight)
child++;
if(H->Data[child].weight > Temp.weight) break;
H->Data[parent] = H->Data[child];
}
H->Data[parent] = Temp;
return T;
} Tree Huffman(Heap H){
Tree T = creatTree();
while(H->size != ){
T->Left = Delete(H);
T->Right = Delete(H);
T->weight = T->Right->weight + T->Right->weight;
Insert(H,*T);
}
T = Delete(H);
return T;
} int WPL(Tree T,int depth){
if(!T->Left && !T->Right) return(depth*T->weight);
else return WPL(T->Left,depth+)+WPL(T->Right,depth+);
} void JudgeTree(Tree T){
if(T){
if(T->Right && T->Left) cnt2++;
else if(!T->Left && !T->Right) cnt1++;
else cnt1 = ;
JudgeTree(T->Left);
JudgeTree(T->Right);
}
} int Judge(){
int i,j,wgh,flag = ;;
char s1[maxn],s2[maxn];
Tree T = creatTree(), pt = NULL;
for(i = ; i < N; i++){
cin >> s1 >> s2;
if(strlen(s2) > N) return ;
for(j = ; s1[] != ch[j]; j++); wgh = w[j];
pt = T;
for(j = ; s2[j] ; j++){
if(s2[j] == ''){
if(!pt->Left) pt->Left = creatTree();
pt = pt->Left;
}
if(s2[j] == ''){
if(!pt->Right) pt->Right = creatTree();
pt = pt->Right;
}
if(pt->weight) flag = ;
if(!s2[j+]){
if(pt->Left || pt->Right) flag = ;
else pt->weight = wgh;
}
}
}
if(flag == ) return ;
cnt1 = cnt2 = ;
JudgeTree(T);
if(cnt1 != cnt2 + ) return ;
if(codelen == WPL(T,)) return ;
else return ;
} int main(){
int i,n;
Tree T;
Heap H;
T = creatTree();
H = creatHeap();
cin >> N;
for(i = ; i < N; i++){
getchar();
cin >> ch[i] >> w[i];
H->Data[H->size].Left = H->Data[H->size].Right = NULL;
T->weight = w[i];
Insert(H,*T);
}
T = Huffman(H);
codelen = WPL(T,);
cin >> n;
while(n--){
if(Judge()) cout<< "Yes" << endl;
else cout << "No" << endl;
}
return ;
}

05-树9 Huffman Codes (30 分)的更多相关文章

  1. pta5-9 Huffman Codes (30分)

    5-9 Huffman Codes   (30分) In 1953, David A. Huffman published his paper "A Method for the Const ...

  2. PTA 05-树9 Huffman Codes (30分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/671 5-9 Huffman Codes   (30分) In 1953, David ...

  3. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  4. pat树之专题(30分)

    (好好复习是王道) 1115. Counting Nodes in a BST (30) 分析:简单题——将bst树构造出来,然后给每个节点打上高度.最后求出树的高度.然后count树高的节点数加上树 ...

  5. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  6. 05-树9 Huffman Codes(30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  7. PAT 甲级1057 Stack (30 分)(不会,树状数组+二分)*****

    1057 Stack (30 分)   Stack is one of the most fundamental data structures, which is based on the prin ...

  8. Huffman codes

    05-树9 Huffman Codes(30 分) In 1953, David A. Huffman published his paper "A Method for the Const ...

  9. PAT 甲级 1053 Path of Equal Weight (30 分)(dfs,vector内元素排序,有一小坑点)

    1053 Path of Equal Weight (30 分)   Given a non-empty tree with root R, and with weight W​i​​ assigne ...

随机推荐

  1. ACM学习历程—ZOJ 3777 Problem Arrangement(递推 && 状压)

    Description The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem sett ...

  2. [转]两种高性能I/O设计模式(Reactor/Proactor)的比较

    [原文地址:http://www.cppblog.com/pansunyou/archive/2011/01/26/io_design_patterns.html] 综述 这篇文章探讨并比较两种用于T ...

  3. (转载)[机器学习] Coursera ML笔记 - 监督学习(Supervised Learning) - Representation

    [机器学习] Coursera ML笔记 - 监督学习(Supervised Learning) - Representation http://blog.csdn.net/walilk/articl ...

  4. 孤独地、凄惨地AK

    一个\(OIer\)要写多少\(for\) 才能被称为一个\(OIer\) 一位巨佬要爆过多少次零 才能在省选逆袭 手指要多少次掠过键盘 才能安心地休息 \(OI\)啊 我的朋友 在风中\(AK\) ...

  5. HTTP 2 VS HTTP 1.1

    提升H5应用加载速度的方式有很多,比如缓存.cdn加速.代码压缩合并和图片压缩等技术. 今天介绍的是HTTP 2.0

  6. SpringBoot系列(1)

    简介:用来简化新Spring应用的初始搭建以及开发过程:该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置. 特点:1. 创建独立的Spring应用程序2. 嵌入的Tomcat, ...

  7. Java enum(枚举)使用详解之一

    enum 的全称为 enumeration, 是 JDK 1.5  中引入的新特性,存放在 java.lang 包中. 下面是我在使用 enum 过程中的一些经验和总结,主要包括如下内容: 1. 原始 ...

  8. WPF Invoke与BeginInvoke的区别

    Control.Invoke 方法 (Delegate) :在拥有此控件的基础窗口句柄的线程上执行指定的委托. Control.BeginInvoke 方法 (Delegate) :在创建控件的基础句 ...

  9. <正则吃饺子> :关于gson使用的一点总结

    一.场景 在群里看到的信息:在使用 gson时候,报了个错 :java.lang.IllegalArgumentException:   declares multiple JSON fields n ...

  10. MySQL的limit优化

    mysql的分页比较简单,只需要limit offset,length就可以获取数据了,但是当offset和length比较大的时候,mysql明显性能下降 1.子查询优化法 先找出第一条数据,然后大 ...