求微分其实就是线性化,导数其实就是线性空间之间的线性变换,Jaocibian矩阵本质上就是导数。

比如,映射处的导数就是处的切空间处的切空间之间的线性映射。切空间都是矢量空间,都有基底,所以这个线性变换就是矩阵。在欧氏空间子空间的开集上,切空间就是某个,比如实轴上的切空间就是,曲面上的切空间为。这样一想,函数的导数无非就是切空间到切空间的线性变换,是一个矩阵,同构于一个实数。

因此,Jacobian矩阵实质上就是切空间之间的基底之间的线性变换,这也是为什么积分中变换坐标时前面会乘以一个Jacobian矩阵的行列式。

作者:玟清
链接:https://www.zhihu.com/question/22586361/answer/76610395
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

 
 

转自:http://jacoxu.com/jacobian%E7%9F%A9%E9%98%B5%E5%92%8Chessian%E7%9F%A9%E9%98%B5/

Jacobi 矩阵的更多相关文章

  1. matlab图

    .6 统计作图 4.6.1 正整数的频率表 命令 正整数的频率表 函数 tabulate 格式 table = tabulate(X) %X为正整数构成的向量,返回3列:第1列中包含X的值第2列为这些 ...

  2. GNU scientific library

    GNU scientific library 是一个强大的C,C++数学库.它涉及的面很广,并且代码效率高,接口丰富.正好最近做的一个项目中用到多元高斯分布,就找到了这个库. GNU scientif ...

  3. 机器学习数学|微积分梯度jensen不等式

    机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 索引 微积分,梯度和Jensen不等式 Tay ...

  4. Bundle Adjustment---即最小化重投影误差(高翔slam---第七讲)

    一.历史由来 Adjustment computation最早是由geodesy的人搞出来的.19世纪中期的时候,geodetics的学者就开始研究large scale triangulations ...

  5. OpenCASCADE解非线性方程组

    OpenCASCADE解非线性方程组 eryar@163.com Abstract. 在科学技术领域里常常提出求解非线性方程组的问题,例如,用非线性函数拟合实验数据问题.非线性网络问题.几何上的曲线曲 ...

  6. GSL--GNU Scientific Library 小记

    摘自http://qianjigui.iteye.com/blog/847612 GSL(GNU Scientific Library)是一个 C 写成的用于科学计算的库,下面是一些相关的包 Desi ...

  7. 理解自动梯度计算autograd

    理解自动求导 例子 def f(x): a = x * x b = x * a c = a + b return c 基于图理解 代码实现 def df(x): # forward pass a = ...

  8. 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量

    [前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...

  9. Jacobi并行拆解【补充】

    作者:桂. 时间:2018-04-24  22:04:52 链接:http://www.cnblogs.com/xingshansi/p/8934373.html 前言 本文为Jacobi并行拆解一文 ...

随机推荐

  1. xml表头内容什么意思

    我来给你解释一下吧,首先这个文件是一个xml文件,那么他里面的所有内容都符合xml语法规范,开头的<project></project>这最外层同样也是一个xml文件的标签,后 ...

  2. 【linux】Linux内存的free的真实含义

  3. C#代码规范和质量检查工具

    代码风格检查:StyleCop The StyleCop tool provides warnings that indicate style and consistency rule violati ...

  4. Oracle RAC的机制与测试方法

    Oracle RAC的机制与测试方法 标签: rac 机制 测试 2016-05-25 09:54 1150人阅读 评论(0) 收藏 举报  分类: oracle(2)  1.RAC原理 Oracle ...

  5. Mono.Cecil 修改目标.NET的IL代码保存时报异常的处理。

    使用Mono.Cecil对目标.NET的DLL程序进行IL修改后保存时报“Failed to resolve assembly: ' xxxxxx, version=xxxxx,Culture=xxx ...

  6. java-appium-527进阶-1 UiAutomator1&2区别和封装

    1.UiAutomator和UiAtumator2的区别: 1.1 UiAutomator1有关于id定位的策略 UiAutomator1 id定位在resourceid匹配失败时,会匹配conten ...

  7. 1009 Product of Polynomials (25 分)

    1009 Product of Polynomials (25 分) This time, you are supposed to find A×B where A and B are two pol ...

  8. 1046 Shortest Distance (20 分)

    1046 Shortest Distance (20 分) The task is really simple: given N exits on a highway which forms a si ...

  9. pyplot 绘图与可视化

    1. 基本使用 #!/usr/bin/env python # coding=utf-8 import matplotlib.pyplot as plt from numpy.random impor ...

  10. LVM逻辑卷创建管理

    首先添加三块硬盘 结构关系图 相关命令 查看磁盘 #fdisk -l 分区 #fdisk /dev/sda/ #n新建 ProMary主分区 extended扩展分区 #p查看 #q不保存退出 #w保 ...