Customization

from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotlib?ex=13

  • Labels

It's time to customize your own plot. This is the fun part, you will see your plot come to life!

# Basic scatter plot, log scale
plt.scatter(gdp_cap, life_exp)
plt.xscale('log')

# Strings
xlab = 'GDP per Capita [in USD]'
ylab = 'Life Expectancy [in years]'
title = 'World Development in 2007'

# Add axis labels
plt.xlabel(xlab)
plt.ylabel(ylab)

# Add title
plt.title(title)

# After customizing, display the plot
plt.show()

  • Ticks

Control the y-ticks by specifying two arguments:

plt.yticks([0,1,2], ["one","two","three"])

In this example, the ticks corresponding to the numbers 0, 1 and 2 will be replaced by onetwo and three, respectively.

# Scatter plot
plt.scatter(gdp_cap, life_exp)

# Previous customizations
plt.xscale('log')
plt.xlabel('GDP per Capita [in USD]')
plt.ylabel('Life Expectancy [in years]')
plt.title('World Development in 2007')

# Definition of tick_val and tick_lab
tick_val = [1000,10000,100000]
tick_lab = ['1k','10k','100k']

# Adapt the ticks on the x-axis
plt.xticks(tick_val,tick_lab)

# After customizing, display the plot
plt.show()

  • Sizes

Right now, the scatter plot is just a cloud of blue dots, indistinguishable from each other. Let's change this. Wouldn't it be nice if the size of the dots corresponds to the population?

To accomplish this, there is a list pop loaded in your workspace. It contains population numbers for each country expressed in millions. You can see that this list is added to the scatter method, as the argument s, for size.

Instructions

  • Run the script to see how the plot changes.
  • Looks good, but increasing the size of the bubbles will make things stand out more.
    • Import the numpy package as np.
    • Use np.array() to create a numpy array from the list pop. Call this Numpy array np_pop.
    • Double the values in np_pop by assigningnp_pop * 2 to np_pop again. Becausenp_pop is a Numpy array, each array element will be doubled.
    • Change the s argument insideplt.scatter() to be np_pop instead ofpop.

# Import numpy as np
import numpy as np

# Store pop as a numpy array: np_pop
np_pop = np.array(pop)

# Double np_pop
np_pop = np_pop * 2

# Update: set s argument to np_pop
plt.scatter(gdp_cap, life_exp, s = np_pop)

# Previous customizations
plt.xscale('log')
plt.xlabel('GDP per Capita [in USD]')
plt.ylabel('Life Expectancy [in years]')
plt.title('World Development in 2007')
plt.xticks([1000, 10000, 100000],['1k', '10k', '100k'])

# Display the plot
plt.show()

  • Colors

The code you've written up to now is available in the script on the right.

The next step is making the plot more colorful!

# Specify c and alpha inside plt.scatter()
plt.scatter(x = gdp_cap, y = life_exp, s = np.array(pop) * 2, c = col, alpha = 0.8)

# Previous customizations
plt.xscale('log')
plt.xlabel('GDP per Capita [in USD]')
plt.ylabel('Life Expectancy [in years]')
plt.title('World Development in 2007')
plt.xticks([1000,10000,100000], ['1k','10k','100k'])

# Show the plot
plt.show()

  • Additional Customizations

If you have another look at the script, under # Additional Customizations, you'll see that there are two plt.text()functions now. They add the words "India" and "China" in the plot.

# Scatter plot
plt.scatter(x = gdp_cap, y = life_exp, s = np.array(pop) * 2, c = col, alpha = 0.8)

# Previous customizations
plt.xscale('log')
plt.xlabel('GDP per Capita [in USD]')
plt.ylabel('Life Expectancy [in years]')
plt.title('World Development in 2007')
plt.xticks([1000,10000,100000], ['1k','10k','100k'])

# Additional customizations
plt.text(1550, 71, 'India')
plt.text(5700, 80, 'China')

# Add grid() call
plt.grid(True)

# Show the plot
plt.show()

Intermediate Python for Data Science learning 3 - Customization的更多相关文章

  1. Intermediate Python for Data Science learning 2 - Histograms

    Histograms from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotlib? ...

  2. Intermediate Python for Data Science learning 1 - Basic plots with matplotlib

    Basic plots with matplotlib from:https://campus.datacamp.com/courses/intermediate-python-for-data-sc ...

  3. 学习笔记之Intermediate Python for Data Science | DataCamp

    Intermediate Python for Data Science | DataCamp https://www.datacamp.com/courses/intermediate-python ...

  4. Intro to Python for Data Science Learning 8 - NumPy: Basic Statistics

    NumPy: Basic Statistics from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/ch ...

  5. Intro to Python for Data Science Learning 7 - 2D NumPy Arrays

    2D NumPy Arrays from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4- ...

  6. Intro to Python for Data Science Learning 5 - Packages

    Packages From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functio ...

  7. Intro to Python for Data Science Learning 2 - List

    List from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-2-python-list ...

  8. Intro to Python for Data Science Learning 6 - NumPy

    NumPy From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4-numpy?ex=1 ...

  9. Intro to Python for Data Science Learning 4 - Methods

    Methods From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-function ...

随机推荐

  1. Eui中eui.Image的source和texture属性赋值导致的获取高宽为0问题

    引擎5.2.5版本 一个eui.Image,给source和texture赋值,获取高宽会不同 = = ! let img:eui.Image = new eui.Image(); img.sourc ...

  2. locate命令的使用

    使用locate命令,遇到了这样的情况:当前目录下有一个文件,而使用这个命令时却查找不到这个文件,上网查了一下,找到了原因,就在下面. 1. find find是最常见和最强大的查找命令,你可以用它找 ...

  3. 【POJ2409】Let it Bead Pólya定理

    [POJ2409]Let it Bead 题意:用$m$种颜色去染$n$个点的环,如果两个环在旋转或翻转后是相同的,则称这两个环是同构的.求不同构的环的个数. $n,m$很小就是了. 题解:在旋转$i ...

  4. [C#/Java] C#中调用Servlet示例

    需求 通用消息接口使用servlet作为服务器端服务接口,第三方应用程序通过http post的方式调用servlet,实现与通用消息接口的调用连接. 参数说明如下: msgTitle:消息标题,描述 ...

  5. 【笔记】javascript权威指南-第三章-类型,值和变量

    javascript中的原始类型和对象类型(基本类型和引用类型) //本书是指:javascript权威指南    //以下内容摘记时间为:2013.7.27   计算机程序运行时需要对值(value ...

  6. R因子

    factor(x = character(), levels, labels = levels, exclude = NA, ordered = is.ordered(x), nmax = NA) l ...

  7. mysql bin-logrow模式,base64转正常sql

    可以通过以下命令查看日志是否开启查看 show global variables like '%log%'; 当bin-log的模式设置为row时 不仅日志长得快 , 并且查看执行的sql时 , 也稍 ...

  8. 使用SQL手动创建数据库并创建一个具有该数据库所有权限的用户

    $ mysql -u adminusername -p Enter password: Welcome to the MySQL monitor. Commands end with ; or \g. ...

  9. SQL Fundamentals: Using Single-Row Functions to Customize Output使用单行函数自定义输出

    SQL Fundamentals || Oracle SQL语言 DUAL is a public table that you can use to view results from functi ...

  10. Pandas新建一个DataFrame

    我们在使用Pandas时候,前提需要一个新的DataFrame,需要首先初始化一个: 那么可以根据字典形式初始化: # 新建一个dataFrame df = pd.DataFrame({']) 必须包 ...