Burn the Linked Camp


Time Limit: 2 Seconds      Memory Limit: 65536 KB

It is well known that, in the period of The Three Empires, Liu Bei, the emperor of the Shu Empire, was defeated by Lu Xun, a general of the Wu Empire. The defeat was due to Liu Bei's wrong decision that he divided his large troops into a number of camps, each of which had a group of armies, and located them in a line. This was the so-called "Linked Camps".

Let's go back to that time. Lu Xun had sent many scouts to obtain the information about his enemy. From his scouts, he knew that Liu Bei had divided his troops into n camps, all of which located in a line, labeled by 1..n from left to right. The ith camp had a maximum capacity of Ci soldiers. Furthermore, by observing the activities Liu Bei's troops had been doing those days, Lu Xun could estimate the least total number of soldiers that were lived in from the ith to the jth camp. Finally, Lu Xun must estimate at least how many soldiers did Liu Bei had, so that he could decide how many troops he should send to burn Liu Bei's Linked Camps.

Input:

There are multiple test cases! On the first line of each test case, there are two integers n (0<n<=1,000) and m (0<=m<=10,000). On the second line, there are n integers C1��Cn. Then m lines follow, each line has three integers i, j, k (0<i<=j<=n, 0<=k<2^31), meaning that the total number of soldiers from the ith camp to the jth camp is at least k.

Output:

For each test case, output one integer in a single line: the least number of all soldiers in Liu Bei's army from Lu Xun's observation. However, Lu Xun's estimations given in the input data may be very unprecise. If his estimations cannot be true, output "Bad Estimations" in a single line instead.

Sample Input:

3 2
1000 2000 1000
1 2 1100
2 3 1300
3 1
100 200 300
2 3 600

Sample Output:

1300
Bad Estimations
题意:给出n个点表示n个军营,c[i]表示第i个军营可容纳的士兵的最大值,接着给出m条边(i,j,k)表示从第i到第j个军营最少有的的士兵数。求在满足以上条件下最少有多少士兵!
我们不妨设S(i)表示从第一个兵营到第i个兵营最少的士兵数,保存在d[i]中
接着就是找出所有的不等式组。
1.(i,j,k) --> S(j)-S(i-1)>=k 即S(i-1)-S(j)<=-k
2.S(j)-S(i-1)<=c=d[j]-d[i-1];
3.设A(i)表示每个军营的实际人数,显然 0<=A(i)<=c[i]
即 S(i)-S(i-1)>=0&&S(i)-S(i-1)<=c[i];
接着将不等式转化为边存入图中
我们令 S(u)<=S(v)+w 表示连接一条从v到u且权值为w的有向边.

#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
inline int read()
{
int s=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {s=s*10+ch-'0';ch=getchar();}
return s*f;
}
struct Edge
{
int to;
int w;
int next;
}edges[50005];
int cnt,dis[10005];
int first[10005];
int n,m;
bool vis[10005];
int counts[10005];
int c[10005];
void add(int a,int b,int c)
{
//cout<<a<<" "<<b<<" "<<c<<endl;
edges[cnt].to=b;
edges[cnt].w=c;
edges[cnt].next=first[a];
first[a]=cnt++;
}
bool spfa(int st,int ed)
{
queue<int>Q;
dis[st]=0;
vis[st]=1;
counts[st]++;
Q.push(st);
while(!Q.empty()){
int u=Q.front();Q.pop();
vis[u]=0;
if(counts[u]>n) return false;
for(int i=first[u];i+1;i=edges[i].next){
int v=edges[i].to;
if(dis[v]>dis[u]+edges[i].w){
dis[v]=dis[u]+edges[i].w;
if(!vis[v]) {Q.push(v);vis[v]=1;counts[v]++;}
}
}
}
//for(int i=1;i<=n;++i) cout<<dis[i]<<" ";cout<<endl;
cout<<-dis[0]<<endl;
return true;
}
int main()
{
int t,i,j;
//cin>>t;
while(cin>>n>>m){
memset(first,-1,sizeof(first));
memset(vis,0,sizeof(vis));
memset(dis,inf,sizeof(dis));
memset(counts,0,sizeof(counts));
cnt=0;c[0]=0;

for(i=1;i<=n;++i) {c[i]=read();
add(i,i-1,0);
add(i-1,i,c[i]);
c[i]+=c[i-1];
}
int u,v,w;
for(i=1;i<=m;++i)
{
u=read(),v=read(),w=read();
add(v,u-1,-w);
add(u-1,v,c[v]-c[u-1]);
}

if(!spfa(n,0)) puts("Bad Estimations");
}
return 0;
}

ZOJ 2770 差分约束+SPFA的更多相关文章

  1. 【poj3169】【差分约束+spfa】

    题目链接http://poj.org/problem?id=3169 题目大意: 一些牛按序号排成一条直线. 有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没 ...

  2. O - Layout(差分约束 + spfa)

    O - Layout(差分约束 + spfa) Like everyone else, cows like to stand close to their friends when queuing f ...

  3. poj3159 差分约束 spfa

    //Accepted 2692 KB 1282 ms //差分约束 -->最短路 //TLE到死,加了输入挂,手写queue #include <cstdio> #include & ...

  4. 【BZOJ】2330: [SCOI2011]糖果(差分约束+spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2330 差分约束运用了最短路中的三角形不等式,即d[v]<=d[u]+w(u, v),当然,最长 ...

  5. (简单) POJ 3169 Layout,差分约束+SPFA。

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

  6. poj Layout 差分约束+SPFA

    题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...

  7. BZOJ.4500.矩阵(差分约束 SPFA判负环 / 带权并查集)

    BZOJ 差分约束: 我是谁,差分约束是啥,这是哪 太真实了= = 插个广告:这里有差分约束详解. 记\(r_i\)为第\(i\)行整体加了多少的权值,\(c_i\)为第\(i\)列整体加了多少权值, ...

  8. POJ-3159.Candies.(差分约束 + Spfa)

    Candies Time Limit: 1500MS   Memory Limit: 131072K Total Submissions: 40407   Accepted: 11367 Descri ...

  9. 图论分支-差分约束-SPFA系统

    据说差分约束有很多种,但是我学过的只有SPFA求差分: 我们知道,例如 A-B<=C,那么这就是一个差分约束. 比如说,著名的三角形差分约束,这个大家都是知道的,什么两边之差小于第三边啦,等等等 ...

随机推荐

  1. nginx 配置https没有ssl_module以及一些错误

    一:开始Nginx的SSL模块 1.1 Nginx如果未开启SSL模块,配置Https时提示错误 1 nginx: [emerg] the "ssl" parameter requ ...

  2. c++第五天:默认初始化

    1.算数类型.(整型和浮点型) 类型决定了数据所占的比特数以及该如何解释这些比特的内容. 练习2.1... 各种类型在计算机中所占的比特数不同,解释方法不同.有符号要花费一个比特存储符号,最大正值要比 ...

  3. Confluence5.8部分空间名称显示为问号的解决方案

    Confluence5.8部分空间名称显示为问号的解决方案 原因: 连接MySQL的时候,有没有在连接串中指定&useUnicode=true&characterEncoding=ut ...

  4. linux虚拟机中安装vm_tool的方法及用处

    解决问题:实现虚拟机VMware上linux与windows互相自由复制与粘贴.如在同一个系统下ctrl+c 与ctrl+v一样方便.解决了只能通过U盘摆渡复制的繁琐问题. 系统环境: 虚拟机VMwa ...

  5. 小工具:使用Python自动生成MD风格链接

    很久之前我在Github上搞了一个LeetCode的仓库,但一直没怎么维护.最近发现自己刷了不少LC的题目了,想搬运到这个仓库上. 玩Github最重要的当然是写README了,MD的逼格决定了项目牛 ...

  6. No compatible targets were found Do you wish to a add new Android Virtual Device ?

    运行一个Android小程序时提示: No compatible targets were found Do you wish to a add new Android Virtual Device ...

  7. kubernetes 命令记录

    操作基本命令:   通过yaml文件创建: kubectl create -f xxx.yaml (不建议使用,无法更新,必须先delete) kubectl apply -f xxx.yaml (创 ...

  8. js 注意点

    1.var // 反例 myname = "global"; // 全局变量 function func() { alert(myname); // "undefined ...

  9. HDU 1247 Hat’s Words(字典树)题解

    题意:给一个字符串集,要你给出n个字符串s,使s能被所给字符串集中的两个相加所得(ahat=a+hat) 思路:简单字典树题,注意查询的时候要判断所指next是否为NULL,否则会RE非法访问. 代价 ...

  10. Git教程摘录

    http://download.csdn.net/download/lianghesgdmv/9893973  教程doc下载 备用-- 链接:http://pan.baidu.com/s/1gfu2 ...