图是一种灵活的数据结构,一般作为一种模型用来定义对象之间的关系或联系。对象由顶点(V)表示,而对象之间的关系或者关联则通过图的边(E)来表示。
图可以分为有向图和无向图,一般用G=(V,E)来表示图。经常用邻接矩阵或者邻接表来描述一副图。
在图的基本算法中,最初需要接触的就是图的遍历算法,根据访问节点的顺序,可分为广度优先搜索(BFS)和深度优先搜索(DFS)。


广度优先搜索(BFS)
广度优先搜索在进一步遍历图中顶点之前,先访问当前顶点的所有邻接结点。
a .首先选择一个顶点作为起始结点,并将其染成灰色,其余结点为白色。
b. 将起始结点放入队列中。
c. 从队列首部选出一个顶点,并找出所有与之邻接的结点,将找到的邻接结点放入队列尾部,将已访问过结点涂成黑色,没访问过的结点是白色。如果顶点的颜色是灰色,表示已经发现并且放入了队列,如果顶点的颜色是白色,表示还没有发现
d. 按照同样的方法处理队列中的下一个结点。
基本就是出队的顶点变成黑色,在队列里的是灰色,还没入队的是白色。
用一副图来表达这个流程如下:

 
1.初始状态,从顶点1开始,队列={1}
 
2.访问1的邻接顶点,1出队变黑,2,3入队,队列={2,3,}
 
3.访问2的邻接结点,2出队,4入队,队列={3,4}
 
4.访问3的邻接结点,3出队,队列={4}
 
5.访问4的邻接结点,4出队,队列={ 空}

从顶点1开始进行广度优先搜索:

  1. 初始状态,从顶点1开始,队列={1}
  2. 访问1的邻接顶点,1出队变黑,2,3入队,队列={2,3,}
  3. 访问2的邻接结点,2出队,4入队,队列={3,4}
  4. 访问3的邻接结点,3出队,队列={4}
  5. 访问4的邻接结点,4出队,队列={ 空}
    结点5对于1来说不可达。
    上面的图可以通过如下邻接矩阵表示:
int maze[5][5] = {
{ 0, 1, 1, 0, 0 },
{ 0, 0, 1, 1, 0 },
{ 0, 1, 1, 1, 0 },
{ 1, 0, 0, 0, 0 },
{ 0, 0, 1, 1, 0 }
};

BFS核心代码如下:

#include <iostream>
#include <queue>
#define N 5
using namespace std;
int maze[N][N] = {
{ 0, 1, 1, 0, 0 },
{ 0, 0, 1, 1, 0 },
{ 0, 1, 1, 1, 0 },
{ 1, 0, 0, 0, 0 },
{ 0, 0, 1, 1, 0 }
};
int visited[N + 1] = { 0, };
void BFS(int start)
{
queue<int> Q;
Q.push(start);
visited[start] = 1;
while (!Q.empty())
{
int front = Q.front();
cout << front << " ";
Q.pop();
for (int i = 1; i <= N; i++)
{
if (!visited[i] && maze[front - 1][i - 1] == 1)
{
visited[i] = 1;
Q.push(i);
}
}
}
}
int main()
{
for (int i = 1; i <= N; i++)
{
if (visited[i] == 1)
continue;
BFS(i);
}
return 0;
}

深度优先搜索(DFS)
深度优先搜索在搜索过程中访问某个顶点后,需要递归地访问此顶点的所有未访问过的相邻顶点。
初始条件下所有节点为白色,选择一个作为起始顶点,按照如下步骤遍历:
a. 选择起始顶点涂成灰色,表示还未访问
b. 从该顶点的邻接顶点中选择一个,继续这个过程(即再寻找邻接结点的邻接结点),一直深入下去,直到一个顶点没有邻接结点了,涂黑它,表示访问过了
c. 回溯到这个涂黑顶点的上一层顶点,再找这个上一层顶点的其余邻接结点,继续如上操作,如果所有邻接结点往下都访问过了,就把自己涂黑,再回溯到更上一层。
d. 上一层继续做如上操作,知道所有顶点都访问过。
用图可以更清楚的表达这个过程:

 
1.初始状态,从顶点1开始
 
2.依次访问过顶点1,2,3后,终止于顶点3
 
3.从顶点3回溯到顶点2,继续访问顶点5,并且终止于顶点5
 
4.从顶点5回溯到顶点2,并且终止于顶点2
 
5.从顶点2回溯到顶点1,并终止于顶点1
 
6.从顶点4开始访问,并终止于顶点4

从顶点1开始做深度搜索:

  1. 初始状态,从顶点1开始
  2. 依次访问过顶点1,2,3后,终止于顶点3
  3. 从顶点3回溯到顶点2,继续访问顶点5,并且终止于顶点5
  4. 从顶点5回溯到顶点2,并且终止于顶点2
  5. 从顶点2回溯到顶点1,并终止于顶点1
  6. 从顶点4开始访问,并终止于顶点4

上面的图可以通过如下邻接矩阵表示:

int maze[5][5] = {
{ 0, 1, 1, 0, 0 },
{ 0, 0, 1, 0, 1 },
{ 0, 0, 1, 0, 0 },
{ 1, 1, 0, 0, 1 },
{ 0, 0, 1, 0, 0 }
};

DFS核心代码如下(递归实现):

#include <iostream>
#define N 5
using namespace std;
int maze[N][N] = {
{ 0, 1, 1, 0, 0 },
{ 0, 0, 1, 0, 1 },
{ 0, 0, 1, 0, 0 },
{ 1, 1, 0, 0, 1 },
{ 0, 0, 1, 0, 0 }
};
int visited[N + 1] = { 0, };
void DFS(int start)
{
visited[start] = 1;
for (int i = 1; i <= N; i++)
{
if (!visited[i] && maze[start - 1][i - 1] == 1)
DFS(i);
}
cout << start << " ";
}
int main()
{
for (int i = 1; i <= N; i++)
{
if (visited[i] == 1)
continue;
DFS(i);
}
return 0;
}

非递归实现如下,借助一个栈:

#include <iostream>
#include <stack>
#define N 5
using namespace std;
int maze[N][N] = {
{ 0, 1, 1, 0, 0 },
{ 0, 0, 1, 0, 1 },
{ 0, 0, 1, 0, 0 },
{ 1, 1, 0, 0, 1 },
{ 0, 0, 1, 0, 0 }
};
int visited[N + 1] = { 0, };
void DFS(int start)
{
stack<int> s;
s.push(start);
visited[start] = 1;
bool is_push = false;
while (!s.empty())
{
is_push = false;
int v = s.top();
for (int i = 1; i <= N; i++)
{
if (maze[v - 1][i - 1] == 1 && !visited[i])
{
visited[i] = 1;
s.push(i);
is_push = true;
break;
}
}
if (!is_push)
{
cout << v << " ";
s.pop();
} }
}
int main()
{
for (int i = 1; i <= N; i++)
{
if (visited[i] == 1)
continue;
DFS(i);
}
return 0;
}

有的DFS是先访问读取到的结点,等回溯时就不再输出该结点,也是可以的。算法和我上面的区别就是输出点的时机不同,思想还是一样的。DFS在环监测和拓扑排序中都有不错的应用。


转自:http://www.jianshu.com/p/70952b51f0c8

图的基本算法(BFS和DFS)的更多相关文章

  1. 图的基本算法(BFS和DFS)(转载)

    图是一种灵活的数据结构,一般作为一种模型用来定义对象之间的关系或联系.对象由顶点(V)表示,而对象之间的关系或者关联则通过图的边(E)来表示. 图可以分为有向图和无向图,一般用G=(V,E)来表示图. ...

  2. 图的基本算法(BFS和DFS)

    图是一种灵活的数据结构,一般作为一种模型用来定义对象之间的关系或联系.对象由顶点(V)表示,而对象之间的关系或者关联则通过图的边(E)来表示. 图可以分为有向图和无向图,一般用G=(V,E)来表示图. ...

  3. 聊聊算法——BFS和DFS

    如果面试字节跳动和腾讯,上来就是先撕算法,阿里就是会突然给你电话,而且不太在意是周末还是深夜, 别问我怎么知道的,想确认的可以亲自去试试.说到算法,直接力扣hard三百题也是可以的,但似乎会比较伤脑, ...

  4. PAT Advanced 1034 Head of a Gang (30) [图的遍历,BFS,DFS,并查集]

    题目 One way that the police finds the head of a gang is to check people's phone calls. If there is a ...

  5. 图的遍历(bfs 和dfs)

    BFS的思想: 从一个图的某一个顶点V0出发,首先访问和V0相邻的且未被访问过的顶点V1.V2.……Vn,然后依次访问与V1.V2……Vn相邻且未被访问的顶点.如此继续,找到所要找的顶点或者遍历完整个 ...

  6. PAT Advanced 1076 Forwards on Weibo (30) [图的遍历,BFS,DFS]

    题目 Weibo is known as the Chinese version of Twitter. One user on Weibo may have many followers, and ...

  7. 图 邻接表 邻接矩阵 BFS生成树 DFS生成树

  8. 图的遍历算法:DFS、BFS

    在图的基本算法中,最初需要接触的就是图的遍历算法,根据访问节点的顺序,可分为深度优先搜索(DFS)和广度优先搜索(BFS). DFS(深度优先搜索)算法 Depth-First-Search 深度优先 ...

  9. 【数据结构与算法】自己动手实现图的BFS和DFS(附完整源码)

    转载请注明出处:http://blog.csdn.net/ns_code/article/details/19617187 图的存储结构 本文的重点在于图的深度优先搜索(DFS)和广度优先搜索(BFS ...

随机推荐

  1. oracle视图建主键

    一个项目要求视图建主键,以下是一个样例 CREATE or replace VIEW SME_V_A....  (AGENTID,AGENTNAME,BUSYNUM,RESTNUM,RESTTIME, ...

  2. 志强处理器结尾的ES、QS、正式版的区别

    CPU的推出过程大概分这几个步骤:ES1:测试架构和工艺制程ES2:修正大量BUG 这个时候的U已经能用了 但还存在隐患ES3(QS):质量认证样品 型号确定 在电脑上能显示型号和规格 可能存在或不存 ...

  3. 5. MIZ7035 PCIe测试 RIFFA【PCIE视频传输】

    1.前言 MIZ7035官方提供了两种pcie的demo,一个就是普通的PIO测试,一个是BMD测试.我只是试验了PIO功能,可以对板卡直接进行IO寄存器读写.而另外一个BMD功能使用了DMA来加速数 ...

  4. android 覆盖安装问题

    1.android中覆盖安装不会导致data/data/package下的数据被删除 2.数据库会有数据库的一套升级机制 3.sharepreference 不会被覆盖,如果在app中有使用Key记录 ...

  5. 【Socket】Socket网络编程常用的结构及函数小结

    名词解析 IP地址的作用是标示计算机的网卡地址,每台计算机都有一个IP地址: 端口是指计算机中为了标示在计算机中访问网络的不同程序而设的编号,并不是网卡接线的端口,而是不同程序的逻辑编号,并不是实际存 ...

  6. LeetCode: Jump Game Total 解题报告

    Jump GameGiven an array of non-negative integers, you are initially positioned at the first index of ...

  7. fzu2158

    http://acm.fzu.edu.cn/problem.php?pid=2158 在密室逃脱游戏中,大家被困在一个密室中,为了逃出密室,需要找到正确的数字密码,于是大家分头行动,分别找到了密码的子 ...

  8. Scapy:局域网MAC地址扫描脚本

    转载自:http://blog.sina.com.cn/s/blog_4b5039210100gn6k.html 未测试,回头研究研究. 用python+scapy写的,只要双击.py文件即可,扫描当 ...

  9. 修改zerolog使log输出的文件名可以在goland里自动定位--技巧

    如何自动定位文件 最近发现goland会自动识别输出的文件或者url,但是有时候又识别不出来,折腾了一下,发现原来要求文件路径或url两边要有空格 改造zerolog 既然如此,那么让我们来改造一下z ...

  10. python dict conver json

    demo: import jsonimport requestsimport xml.etree.ElementTree as et def xmlsjondemo(): data={'statusc ...