Linear regression with regularization

当我们的λ很大时,hθ(x)≈θ0,是一条直线,会出现underfit;当我们的λ很小时(=0时),即相当于没有做regularization,会出现overfit;只有当我们的λ取intermediate值时,才会刚刚好。那么我们怎么自动来选择这个λ的值呢?

正则化时的Jtrain(θ),Jcv(θ),Jtest(θ)的表达式

正则化时的Jtrain(θ),Jcv(θ),Jtest(θ)的表达式不带有regularization式子,cost function J(θ)有regularization式子

怎样选择regularization parameter λ(model selection for λ)

计算不同的 λ的值(从0至10.24(为了方便写成10),下一个是上一个的二倍)的cost function,求出使cost function最小的parametersθ,然后再计算Jcv(θ),选择最小的Jcv(θ)的那个model,如上图中是θ(5)以及其对应的λ的值,然后再计算test error,看其预测准确率.

Jtrain(θ)(how well my hypothesis do on trainning set),Jcv(θ)(how well my hypothesis do on validation set)与λ的关系

当λ很小时,可以认为没有做正则化,则会出现overfitting(high variance)现象,即Jtrain(θ)很小但是Jcv(θ)很大;当λ很大时,会出现underfit(high bias)现象,即Jtrain(θ)与Jcv(θ)都很大;

上面的这个图有点理想化,实际数据画出来的图可能会有些噪声与曲折,但是大致曲线的走向是一致的,所以我们可以通过画这样一个图来看我们设置的λ的值是否适合,或者通过编制程序来自动选择最合适的那个λ的值

Bias vs. Variance(2)--regularization and bias/variance,如何选择合适的regularization parameter λ(model selection)的更多相关文章

  1. Bias(偏差),Error(误差),和Variance(方差)的区别和联系

    准: bias描述的是根据样本拟合出的模型的输出预测结果的期望与样本真实结果的差距,简单讲,就是在样本上拟合的好不好.要想在bias上表现好,low bias,就得复杂化模型,增加模型的参数,但这样容 ...

  2. Andrew Ng机器学习公开课笔记 -- Regularization and Model Selection

    网易公开课,第10,11课 notes,http://cs229.stanford.edu/notes/cs229-notes5.pdf   Model Selection 首先需要解决的问题是,模型 ...

  3. 机器学习 Regularization and model selection

    Regularization and model selection 假设我们为了一个学习问题尝试从几个模型中选择一个合适的模型.例如,我们可能用一个多项式回归模型hθ(x)=g(θ0+θ1x+θ2x ...

  4. 转:机器学习 规则化和模型选择(Regularization and model selection)

    规则化和模型选择(Regularization and model selection) 转:http://www.cnblogs.com/jerrylead/archive/2011/03/27/1 ...

  5. 机器学习中的Bias(偏差),Error(误差),和Variance(方差)有什么区别和联系?

    前几天搜狗的一道笔试题,大意是在随机森林上增加一棵树,variance和bias如何变化呢? 参考知乎上的讨论:https://www.zhihu.com/question/27068705 另外可参 ...

  6. 2.9 Model Selection and the Bias–Variance Tradeoff

    结论 模型复杂度↑Bias↓Variance↓ 例子 $y_i=f(x_i)+\epsilon_i,E(\epsilon_i)=0,Var(\epsilon_i)=\sigma^2$ 使用knn做预测 ...

  7. [转]理解 Bias 与 Variance 之间的权衡----------bias variance tradeoff

    有监督学习中,预测误差的来源主要有两部分,分别为 bias 与 variance,模型的性能取决于 bias 与 variance 的 tradeoff ,理解 bias 与 variance 有助于 ...

  8. 【思考】为什么说Bagging减少variance,Boosting减少bias?(转载)

    具体讨论可见于此知乎问题,有很多种理解方向,甚至这一个命题可能本来就不成立!

  9. 斯坦福大学公开课机器学习: advice for applying machine learning | regularization and bais/variance(机器学习中方差和偏差如何相互影响、以及和算法的正则化之间的相互关系)

    算法正则化可以有效地防止过拟合, 但正则化跟算法的偏差和方差又有什么关系呢?下面主要讨论一下方差和偏差两者之间是如何相互影响的.以及和算法的正则化之间的相互关系 假如我们要对高阶的多项式进行拟合,为了 ...

随机推荐

  1. Postman系列三:Postman中post接口实战(上传文件、json请求)

    一:接口测试过程中GET请求与POST请求的主要区别 从开发角度我们看get与post的主要区别是:1.Get是用来从服务器上获得数据,而Post是用来向服务器上传递数据:2.Get安全性比Post低 ...

  2. 安卓手机与iOS手机的区别

    安卓手机与iOS手机的区别 1.操作系统不同  安卓手机都是安卓操作系统:IOS手机都是iOS操作系统. 目前安卓最新的系统是Android 8.1:iOS版本最新的是iOS 11. 2.操作方式不同 ...

  3. PHP 死锁问题分析

    背景:对于死锁的问题,人们往往想到出现一些关于访问很缓慢,有白页现象,要是测试环境(我就真实遇到测试环境有本文谈及一样的问题)你也就重启一下PHP的php-fpm进程发现又好了,隔一段时间又出类似的问 ...

  4. [转帖]关于一个 websocket 多节点分布式问题的头条前端面试题

    关于一个 websocket 多节点分布式问题的头条前端面试题 https://juejin.im/post/5dcb5372518825352f524614 你来说说 websocket 有什么用? ...

  5. java 多个数 组合成不同的组

    public static Stack<Integer> stack = new Stack<Integer>(); private static List<String ...

  6. VS2015如何在同一个解决方案下建立多个项目

    1.先按照常规的方法建一个项目: 2.点击解决方案:右键=>添加=>新建项目 注:本文链接:https://blog.csdn.net/weixin_43081805/article/de ...

  7. tkinter学习笔记_04

    8.勾选项 checkbutton import tkinter as tk root = tk.Tk() root.title("xxx") root.geometry('200 ...

  8. NEST 增删改查

    /// <summary> /// HEAD /employee/employee/1 /// </summary> public void DocumentExists() ...

  9. 使用jQuery开发accordion手风琴插件

    一.插件效果 手风琴插件常用的功能均已实现,包括:手风琴菜单项的折叠展开效果.选中指定菜单项.判断菜单项是否选中等. 效果如下: 二.插件内部HTML元素结构 <!-- accordioon组件 ...

  10. docker第一章--介绍和安装