Backpack III
Description
Given n kinds of items, and each kind of item has an infinite number available. The i-th item has size A[i] and value V[i].
Also given a backpack with size m. What is the maximum value you can put into the backpack?
- You cannot divide item into small pieces.
- Total size of items you put into backpack can not exceed
m.
Example
Example 1:
Input: A = [2, 3, 5, 7], V = [1, 5, 2, 4], m = 10
Output: 15
Explanation: Put three item 1 (A[1] = 3, V[1] = 5) into backpack.
Example 2:
Input: A = [1, 2, 3], V = [1, 2, 3], m = 5
Output: 5
Explanation: Strategy is not unique. For example, put five item 0 (A[0] = 1, V[0] = 1) into backpack.
思路:
类似于最基本的01背包, 我们设定 f[i][j] 表示前 i 种物品装到容量为 j 的背包里, 能获取的最大价值为多少.
比较简单的转移是直接枚举第i种物品取用多少个: f[i][j] = max{f[i - 1][j - x * A[i]] + x * V[i]}
但是这样速度较慢, 可以优化成 f[i][j] 直接由 f[i][j - A[i]] 转移, 并且从小到大枚举 j, 这样做的含义就是在已经拿过第 i 个物品的之后还可以再拿它. 也就是说: 计算 f[i][j] 时, 初始设置为 f[i - 1][j], 然后 f[i][j] = max(f[i][j], f[i][j - A[i]] + V[i])
另外, 可以使用滚动数组优化, 使用滚动数组之后也不必要手动设置 f[i][j] = f[i - 1][j], 与01背包使用的滚动数组相反, 这里恰好需要正着枚举容量 j, 因而有 f[j] = max(f[j], f[j - A[i]] + V[i])
public class Solution {
/**
* @param A: an integer array
* @param V: an integer array
* @param m: An integer
* @return: an array
*/
public int backPackIII(int[] A, int[] V, int m) {
// Write your code here
int n = A.length;
int[] f = new int[m + 1];
for (int i = 0; i < n; ++i)
for (int j = A[i]; j <= m; ++j)
if (f[j - A[i]] + V[i] > f[j])
f[j] = f[j - A[i]] + V[i];
return f[m];
}
}
Backpack III的更多相关文章
- Java Algorithm Problems
Java Algorithm Problems 程序员的一天 从开始这个Github已经有将近两年时间, 很高兴这个repo可以帮到有需要的人. 我一直认为, 知识本身是无价的, 因此每逢闲暇, 我就 ...
- 用Kotlin开发Android应用(III):扩展函数和默认值
这是关于Kotlin的第三篇. 原文标题:Kotlin for Android (III): Extension functions and default values 原文链接:http://an ...
- LeetCode Single Number I / II / III
[1]LeetCode 136 Single Number 题意:奇数个数,其中除了一个数只出现一次外,其他数都是成对出现,比如1,2,2,3,3...,求出该单个数. 解法:容易想到异或的性质,两个 ...
- SPOJ GSS3 Can you answer these queries III[线段树]
SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...
- 【Codeforces717F】Heroes of Making Magic III 线段树 + 找规律
F. Heroes of Making Magic III time limit per test:3 seconds memory limit per test:256 megabytes inpu ...
- LeetCode——Best Time to Buy and Sell Stock III (股票买卖时机问题3)
问题: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...
- 1. Two Sum I & II & III
1. Given an array of integers, return indices of the two numbers such that they add up to a specific ...
- 【LeetCode】Single Number I & II & III
Single Number I : Given an array of integers, every element appears twice except for one. Find that ...
- 黑科技项目:英雄无敌III Mod <<Fallen Angel>>介绍
英雄无敌三简介(Heroes of Might and Magic III) 英3是1999年由New World Computing在Windows平台上开发的回合制策略魔幻游戏,其出版商是3DO. ...
随机推荐
- [转帖]ARM A77+G77最强公版架构:联发科5G SoC计划11月26日发布
ARM A77+G77最强公版架构:联发科5G SoC计划11月26日发布 https://www.cnbeta.com/articles/tech/909025.htm 主流的手机SoC厂商已经纷纷 ...
- urlencode编码 — 为什么要编码
原文链接:https://blog.csdn.net/stpeace/article/details/82892571 参考:https://blog.csdn.net/z69183787/artic ...
- CEF4Delphi 常用设置
CEF4Delphi是由 SalvadorDíazFau 创建的一个开源项目,用于在基于Delphi的应用程序中嵌入基于Chromium的浏览器. CEF4Delphi 基于Henri Gourves ...
- AS3灰色图像
一开始觉得AS3的滤镜很难使用,尤其是那些矩阵,让人望而生畏.最近写一个聊天模块,要用到离线状态下的灰色头像,于是认真研究了ColorMatrixFilter,发现其实也没有那么难.所谓的矩阵其实就是 ...
- Python字符串格式化方式之format
format方式是在Python3引入了一个新的字符串格式化的方法,并且随后支持了Python2.7.这个新的字符串格式化方法摆脱了%操作符并且使得字符串格式化的语法更规范了.现在时候通过调用字符串对 ...
- python 多进程和协程配合使用
一.需求分析 有一批key已经写入到3个txt文件中,每一个txt文件有30万行记录.现在需要读取这些txt文件,判断key是否在数据仓库中.(redis或者mysql) 为空的记录,需要写入到日志文 ...
- 正则表达式"(^|&)" ,什么意思?
^匹配字符串开头,&就是&字符 (^|&)匹配字符串开头或者&字符,如果其后还有正则,那么必须出现在字符串开始或&字符之后 用法一: 限定开头 文档上给出了 ...
- 15天入门RT-Thread之第一天
今天开始学习jiezhi15天的RT-Thread入门系列课程 感谢RT-Thread提供的免费课程,终于可以系统入门RT-Thread ,感兴趣的同学可以关注RT-Thread官方公众号,获取最新的 ...
- apache-httpd代理请求,selinux造成503问题的解决方法
NameVirtualHost *:80 <VirtualHost *:80> ServerName test.baidu.com ProxyPreserveHost on ProxyPa ...
- Java新功能之方法引用
方法引用的使用 最初,引用只是针对引用类型完成的,也就是只有数组.类.接口才具备引用操作.JDK1.8后追加了方法引用.实际上引用的本质就是别名. 因此方法的引用就是别名的使用. 方法的引用有四种形式 ...