Recurrent neural network (RNN) - Pytorch版
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms # 配置GPU或CPU设置
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 超参数设置
sequence_length = 28
input_size = 28
hidden_size = 128
num_layers = 2
num_classes = 10
batch_size = 100
num_epochs = 2
learning_rate = 0.01 # MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='./data/',
train=True,
transform=transforms.ToTensor(),# 将PIL Image或者 ndarray 转换为tensor,并且归一化至[0-1],归一化至[0-1]是直接除以255
download=True) test_dataset = torchvision.datasets.MNIST(root='./data/',
train=False,
transform=transforms.ToTensor())# 将PIL Image或者 ndarray 转换为tensor,并且归一化至[0-1],归一化至[0-1]是直接除以255 # 训练数据加载,按照batch_size大小加载,并随机打乱
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
# 测试数据加载,按照batch_size大小加载
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False) # Recurrent neural network (many-to-one) 多对一
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(RNN, self).__init__() # 继承 __init__ 功能
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) # if use nn.RNN(), it hardly learns LSTM 效果要比 nn.RNN() 好多了
self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x):
# Set initial hidden and cell states
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) # Forward propagate LSTM
out, _ = self.lstm(x, (h0, c0)) # out: tensor of shape (batch_size, seq_length, hidden_size) # Decode the hidden state of the last time step
out = self.fc(out[:, -1, :])
return out model = RNN(input_size, hidden_size, num_layers, num_classes).to(device)
print(model)
# RNN((lstm): LSTM(28, 128, num_layers=2, batch_first=True)
# (fc): Linear(in_features=128, out_features=10, bias=True)) # 损失函数与优化器设置
# 损失函数
criterion = nn.CrossEntropyLoss()
# 优化器设置 ,并传入RNN模型参数和相应的学习率
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # 训练模型
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.reshape(-1, sequence_length, input_size).to(device)
labels = labels.to(device) # 前向传播
outputs = model(images)
# 计算损失 loss
loss = criterion(outputs, labels) # 反向传播与优化
# 清空上一步的残余更新参数值
optimizer.zero_grad()
# 反向传播
loss.backward()
# 将参数更新值施加到RNN model的parameters上
optimizer.step()
# 每迭代一定步骤,打印结果值
if (i + 1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch + 1, num_epochs, i + 1, total_step, loss.item())) # 测试模型
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.reshape(-1, sequence_length, input_size).to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item() print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) # 保存已经训练好的模型
# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')
Recurrent neural network (RNN) - Pytorch版的更多相关文章
- Convolutional neural network (CNN) - Pytorch版
import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms # ...
- Recurrent Neural Network(循环神经网络)
Reference: Alex Graves的[Supervised Sequence Labelling with RecurrentNeural Networks] Alex是RNN最著名变种 ...
- 机器学习: Python with Recurrent Neural Network
之前我们介绍了Recurrent neural network (RNN) 的原理: http://blog.csdn.net/matrix_space/article/details/5337404 ...
- Recurrent Neural Network系列2--利用Python,Theano实现RNN
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...
- Recurrent Neural Network系列3--理解RNN的BPTT算法和梯度消失
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 这是RNN教程的第三部分. 在前面的教程中,我们从头实现了一个循环 ...
- 循环神经网络(Recurrent Neural Network,RNN)
为什么使用序列模型(sequence model)?标准的全连接神经网络(fully connected neural network)处理序列会有两个问题:1)全连接神经网络输入层和输出层长度固定, ...
- 4.5 RNN循环神经网络(recurrent neural network)
自己开发了一个股票智能分析软件,功能很强大,需要的点击下面的链接获取: https://www.cnblogs.com/bclshuai/p/11380657.html 1.1 RNN循环神经网络 ...
- Recurrent Neural Network系列1--RNN(循环神经网络)概述
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...
- Recurrent Neural Network系列4--利用Python,Theano实现GRU或LSTM
yi作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORK ...
随机推荐
- Deepin Create/Delete Folder refresh
Did u have a problem whth the deepin file manager,Everthime I create/delete a Folder of File i have ...
- Ruby on Rails框架(1)-安装全攻略
序 关于Rails的三句箴言 (1)DRY:Don't Repeat Yourself(不要重复你自己) rails的开发理念,不要用你的代码不停的重复,rails框架给开发者提供了一套非常完善的支持 ...
- datagrid其中某列需要动态隐藏或显示的mvvm绑定方式,也可以用在其他表格类型控件上
版权归原作者所有. 引用地址 [WPF] HOW TO BIND TO DATA WHEN THE DATACONTEXT IS NOT INHERITED MARCH 21, 2011 THOMAS ...
- MYSQL | ERROR 1305(42000) SAVEPOINT *** DOES NOT EXIST
autocommit模式:在开启情况下,对于每条statement来说,都会自动形成一个commit,也就是会即时对开始和结束一个事务.所以,当出现rollback to savepoint出现这个错 ...
- Firefox disable search in the address bar
disable search in the address bar Hi oitconz, setting keyword.enabled to false prevents Firefox from ...
- Unity编辑器环境在Inspector面板中显示变量
Serialize功能Unity3D 中提供了非常方便的功能可以帮助用户将 成员变量 在Inspector中显示,并且定义Serialize关系. 简单的说,在没有自定义Inspector的情况下所有 ...
- JS构造函数中有return
function foo(name) { this.name = name; return name } console.log(new foo('光何')) function bar(name) { ...
- matplotlib显示黑白灰度图像颜色设置
对于黑白灰度图像(矩阵) 1. 默认使用伪彩色拉升 2 cmap参数为 binary,可能导致颜色反转 3. cmap = gray,same color as origin, that is, wh ...
- 数据包分析中Drop和iDrop的区别
数据包分析中Drop和iDrop的区别 在数据包分析中,Drop表示因为过滤丢弃的包.为了区分发送和接受环节的过滤丢弃,把Drop又分为iDrop和Drop.其中,iDrop表示接受环节丢弃的包, ...
- Vue-cli项目结构讲解
|-- build // 项目构建(webpack)相关代码 | |-- build.js // 生产环境构建代码 | |-- check-version.js // 检查node.npm等版本 | ...