This time let us consider the situation in the movie "Live and Let Die" in which James Bond, the world's most famous spy, was captured by a group of drug dealers. He was sent to a small piece of land at the center of a lake filled with crocodiles. There he performed the most daring action to escape -- he jumped onto the head of the nearest crocodile! Before the animal realized what was happening, James jumped again onto the next big head... Finally he reached the bank before the last crocodile could bite him (actually the stunt man was caught by the big mouth and barely escaped with his extra thick boot).

Assume that the lake is a 100 by 100 square one. Assume that the center of the lake is at (0,0) and the northeast corner at (50,50). The central island is a disk centered at (0,0) with the diameter of 15. A number of crocodiles are in the lake at various positions. Given the coordinates of each crocodile and the distance that James could jump, you must tell him a shortest path to reach one of the banks. The length of a path is the number of jumps that James has to make.

Input Specification:

Each input file contains one test case. Each case starts with a line containing two positive integers N(≤100), the number of crocodiles, and D, the maximum distance that James could jump. Then N lines follow, each containing the  (x,y) location of a crocodile. Note that no two crocodiles are staying at the same position.

Output Specification:

For each test case, if James can escape, output in one line the minimum number of jumps he must make. Then starting from the next line, output the position  (x,y) of each crocodile on the path, each pair in one line, from the island to the bank. If it is impossible for James to escape that way, simply give him 0 as the number of jumps. If there are many shortest paths, just output the one with the minimum first jump, which is guaranteed to be unique.

Sample Input 1:

17 15
10 -21
10 21
-40 10
30 -50
20 40
35 10
0 -10
-25 22
40 -40
-30 30
-10 22
0 11
25 21
25 10
10 10
10 35
-30 10

Sample Output 1:

4
0 11
10 21
10 35

Sample Input 2:

4 13
-12 12
12 12
-12 -12
12 -12

Sample Output 2:

0
#include<cstdio>
#include<queue>
#include<stack>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = ;
const int minLen = - 15.0/; struct Point
{
int x,y;
}point[maxn]; int path[maxn] = {};
bool vis[maxn] = {};
int n,d; void BFS();
void init(int b[]);
bool cmp(int x,int y);
int FirstJump(int v);
bool isSafe(int v);
bool Jump(int v1,int v2); int main()
{
scanf("%d%d",&n,&d);
for (int i = ; i < n; i++)
{
scanf("%d%d",&point[i].x,&point[i].y);
} if (d >= minLen)
{
printf("1\n");
}
else
{
BFS();
}
return ;
} void BFS()
{
int b[maxn];
init(b);
sort(b,b+n,cmp); queue<int> q;
int last;
int tail;
int step = ; for (int i = ; i < n; i++)
{
if(FirstJump(b[i]))
{
q.push(b[i]);
vis[b[i]] = true;
last = b[i];
}
} while(!q.empty())
{
int now = q.front();
q.pop(); if (isSafe(now))
{
int k =;
stack<int> s;
cout << step << endl; while (k < step)
{
s.push(now);
now = path[now];
k++;
} while (!s.empty())
{
now = s.top();
s.pop();
cout << point[now].x << " " << point[now].y << endl;
}
return;
} for (int i = ; i < n; i++)
{
if (!vis[i] && Jump(now,i))
{
q.push(i);
vis[i] = true;
tail = i;
path[i] = now;
}
} if (last == now)
{
last = tail;
step++;
}
} if (q.empty())
{
cout << "" << endl;
}
} void init(int b[])
{
for (int i = ; i < n; i++)
{
b[i] = i;
}
} bool cmp(int x,int y)
{
return FirstJump(x) < FirstJump(y);
} int FirstJump(int v)
{
int dis = pow(point[v].x,) + pow(point[v].y,);
int dis_Jump = pow(15.0/ + d,);
if (dis <= dis_Jump)
{
return dis;
}
else
{
return ;
}
} bool isSafe(int v)
{
int dis_safe = - d;
return abs(point[v].x) >= dis_safe || abs(point[v].y) >= dis_safe;
} bool Jump(int v1,int v2)
{
int dis_x = pow(point[v1].x-point[v2].x, );
int dis_y = pow(point[v1].y-point[v2].y, );
if (dis_x + dis_y <= d*d)
{
return true;
}
else
{
return false;
}
}


07-图5 Saving James Bond - Hard Version (30 分)的更多相关文章

  1. PTA 07-图5 Saving James Bond - Hard Version (30分)

    07-图5 Saving James Bond - Hard Version   (30分) This time let us consider the situation in the movie ...

  2. pat06-图4. Saving James Bond - Hard Version (30)

    06-图4. Saving James Bond - Hard Version (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作 ...

  3. PTA 06-图2 Saving James Bond - Easy Version (25分)

    This time let us consider the situation in the movie "Live and Let Die" in which James Bon ...

  4. 06-图2 Saving James Bond - Easy Version (25 分)

    This time let us consider the situation in the movie "Live and Let Die" in which James Bon ...

  5. Saving James Bond - Easy Version 原创 2017年11月23日 13:07:33

    06-图2 Saving James Bond - Easy Version(25 分) This time let us consider the situation in the movie &q ...

  6. Saving James Bond - Easy Version (MOOC)

    06-图2 Saving James Bond - Easy Version (25 分) This time let us consider the situation in the movie & ...

  7. pat05-图2. Saving James Bond - Easy Version (25)

    05-图2. Saving James Bond - Easy Version (25) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作 ...

  8. Saving James Bond - Hard Version

    07-图5 Saving James Bond - Hard Version(30 分) This time let us consider the situation in the movie &q ...

  9. PAT Saving James Bond - Easy Version

    Saving James Bond - Easy Version This time let us consider the situation in the movie "Live and ...

随机推荐

  1. .net Dapper 实践系列(5) ---事务编辑(Layui+Ajax+Dapper+MySQL)

    目录 写在前面 实践步骤 写在前面 上一小节,我们总结了根据Id查询多表数据,最后返回Json对象给前台的例子.接下来,在这一小节我们要实现多表编辑的操作. 实践步骤 因为上一小节以及创建了Edit视 ...

  2. 重温拉格朗日乘子法和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  3. rest-spring-boot-starter

    rest-spring-boot-starter 基于spring boot,统一业务异常处理,统一返回格式包装 依赖 <dependency> <groupId>tk.fis ...

  4. 安装和使用pyltp

    什么是pyltp: pyltp 是LTP的 Python 封装,提供了分词,词性标注,命名实体识别,依存句法分析,语义角色标注的功能. 安装 pyltp 测试环境:系统win10 64位, pytho ...

  5. element-ui 自定义 Upload 上传进度条

    <el-upload class="upload-demo" ref="vidos" :action="URL+'/api/post/file' ...

  6. 根父类:Object 类

    一.Object类 Java中规定: 如果一个类没有显式声明它的父类(即没有写extends xx),那么默认这个类的父类就是java.lang.Object. 类 Object 是类层次结构的根类. ...

  7. Kafka Streams开发入门(2)

    背景 上一篇我们介绍了Kafka Streams中的消息转换操作map,今天我们给出另一个经典的转换操作filter的用法.依然是结合一个具体的实例展开介绍. 演示功能说明 本篇演示filter用法, ...

  8. prometheus学习系列五: Prometheus配置文件

    在prometheus监控系统,prometheus的职责是采集,查询和存储和推送报警到alertmanager.本文主要介绍下prometheus的配置文件. 全局配置文件简介 默认配置文件 [ro ...

  9. Backbone——数据驱动UI的js开发模式

    转载请注明原文地址:https://www.cnblogs.com/ygj0930/p/10826074.html 一:Backbone是什么——JS的MVC框架 Backbone基于undersco ...

  10. Windows & Ubuntu 双系统完美卸载Ubuntu(不残留,无污染)

    双系统卸载Ubuntu时,如若直接从Windows磁盘管理里格式化Ubuntu分区,由于Ubuntu的引导盘的原因,会导致电脑启动时出现问题,所以不建议这样的操作. 卸载Ubuntu前需要区分BIOS ...