这里用torch 做一个最简单的测试

目标就是我们用torch 建立一个一层的网络,然后拟合一组可以回归的数据

import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = x.pow(2) + 0.2*torch.rand(x.size()) x, y = Variable(x), Variable(y)

这里我们先早出来假数据,这里需要注意的是,最新版本的torch已经不需要variable了

接着我们来搭建我们的网络

class Net(torch.nn.Module):

    def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(n_feature, n_hidden)
self.predict = torch.nn.Linear(n_hidden, n_output) # 前向传播
def forward(self, x):
x = F.relu(self.hidden(x))
x = self.predict(x)
return x

我们做了个 1-10-1这样的单隐藏层的网络

net = Net(n_feature=1, n_hidden=10, n_output=1)
print(net) # define optimizer
optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
loss_func = torch.nn.MSELoss()

接着我们选SGD来优化,选MSE做loss function

开始训练

plt.ion()

# begin training
for t in range(200):
prediction = net(x)
loss = loss_func(prediction, y) # must be (1. nn output, 2. target) optimizer.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
if t % 5 == 0:
plt.cla()
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1) plt.ioff()
plt.show()

大概效果是这样

pytorch tutorial 1的更多相关文章

  1. Pytorch tutorial 之Datar Loading and Processing (1)

    引自Pytorch tutorial: Data Loading and Processing Tutorial 这节主要介绍数据的读入与处理. 数据描述:人脸姿态数据集.共有69张人脸,每张人脸都有 ...

  2. 【转载】Pytorch tutorial 之Datar Loading and Processing

    前言 上文介绍了数据读取.数据转换.批量处理等等.了解到在PyTorch中,数据加载主要有两种方式: 1.自定义的数据集对象.数据集对象被抽象为Dataset类,实现自定义的数据集需要继承Datase ...

  3. Pytorch tutorial 之Datar Loading and Processing (2)

    上文介绍了数据读取.数据转换.批量处理等等.了解到在PyTorch中,数据加载主要有两种方式: 1. 自定义的数据集对象.数据集对象被抽象为Dataset类,实现自定义的数据集需要继承Dataset. ...

  4. Pytorch tutorial 之Transfer Learning

    引自官方:  Transfer Learning tutorial Ng在Deeplearning.ai中讲过迁移学习适用于任务A.B有相同输入.任务B比任务A有更少的数据.A任务的低级特征有助于任务 ...

  5. pytorch tutorial 2

    这里使用pytorch进行一个简单的二分类模型 导入所有我们需要的库 import torch import matplotlib.pyplot as plt import torch.nn.func ...

  6. Pytorch入门之VAE

    关于自编码器的原理见另一篇博客 : 编码器AE & VAE 这里谈谈对于变分自编码器(Variational auto-encoder)即VAE的实现. 1. 稀疏编码 首先介绍一下“稀疏编码 ...

  7. (转)Awesome PyTorch List

    Awesome-Pytorch-list 2018-08-10 09:25:16 This blog is copied from: https://github.com/Epsilon-Lee/Aw ...

  8. 吐血整理:PyTorch项目代码与资源列表 | 资源下载

    http://www.sohu.com/a/164171974_741733   本文收集了大量基于 PyTorch 实现的代码链接,其中有适用于深度学习新手的“入门指导系列”,也有适用于老司机的论文 ...

  9. Ubuntu 16.04上anaconda安装和使用教程,安装jupyter扩展等 | anaconda tutorial on ubuntu 16.04

    本文首发于个人博客https://kezunlin.me/post/23014ca5/,欢迎阅读最新内容! anaconda tutorial on ubuntu 16.04 Guide versio ...

随机推荐

  1. ** PC端完美兼容各种分辨率的简便方法 **

    原文链接:https://blog.csdn.net/qq_43156398/article/details/102785370 PS:此方法需使用到less或者scss的@变量来支持 以设计图 19 ...

  2. dtd的引入方式

    dtd三种引入方法 //第一种引入方式: //1.dtd <?xml version="1.0" encoding="UTF-8"?> <!E ...

  3. Ext.create使用(下)

    本文介绍第三种使用方法: //通过类的引用实例化一个类 var w1 = Ext.create(Ext.window.Window, {//类的引用 title: '窗体', html:'<fo ...

  4. HTTP Protocol

    HTTP协议 1      HTTP请求状态码 当用户试图通过 HTTP 访问一台正在运行 Internet 信息服务 (IIS) 的服务器上的内容时,IIS 返回一个表示该请求的状态的数字代码.状态 ...

  5. MySQL的过滤(极客时间学习笔记)

    数据过滤 SQL的数据过滤, 可以减少不必要的数据行, 从而可以达到提升查询效率的效果. 比较运算符 在SQL中, 使用WHERE子句对条件进行筛选, 筛选的时候比较运算符是很重要. 上面的比较运算符 ...

  6. liteos队列(五)

    1. 概述 队列又称消息队列,是一种常用于任务间通信的数据结构,实现了接收来自任务或中断的不固定长度的消息,并根据不同的接口选择传递消息是否存放在自己空间.任务能够从队列里面读取消息,当队列中的消息是 ...

  7. if语句编写Mysql备份脚本

    #!/bin/bash #auto bakcup mysql db #by authors zgh #define backup path BAK_DIR=/data/backup/`date +%Y ...

  8. requests---自动写博客

    前两天写过一个关于session的博客,session登录过后,可以进行一系列的操作,今天通过模拟登录博客园,自动写博客 自动写博客 我们先理下书写的思路: 1.通过request访问博客园: 2.通 ...

  9. 程序员代码面试指南 IT名企算法与数据结构题目最优解

    原文链接 这是一本程序员面试宝典!书中对IT名企代码面试各类题目的最优解进行了总结,并提供了相关代码实现.针对当前程序员面试缺乏权威题目汇总这一痛点,本书选取将近200道真实出现过的经典代码面试题,帮 ...

  10. conan使用(二)--创建私有仓库

    前面我们已经能够使用conan来从公共服务器上拉取C/C++包来集成进我的工程中,但是在实际开发中,我们可能需要自己封装或使用非公开的库,那么自己搭建一个私服是个很现实的需求. 搭建conan私服有几 ...