Given a string s, find the longest palindromic subsequence's length in s. You may assume that the maximum length of s is 1000.

Example 1:
Input:

"bbbab"

Output:

4

One possible longest palindromic subsequence is "bbbb".

Example 2:
Input:

"cbbd"

Output:

2

One possible longest palindromic subsequence is "bb".

给一个字符串,求最大的回文子序列,子序列和子字符串不同,不需要是连续的字符。

解法:DP

State: dp[i][j], 表示[i,j]区间内的字符串的最长回文子序列。如果s[i]==s[j],那么i和j就可以增加2个回文串的长度,我们知道中间dp[i + 1][j - 1]的值,那么其加上2就是dp[i][j]的值。如果s[i] != s[j],那么我们可以去掉i或j其中的一个字符,然后比较两种情况下所剩的字符串谁dp值大,就赋给dp[i][j]。

Function: dp[i][j] = dp[i + 1][j - 1] + 2 if (s[i] == s[j]) or max(dp[i + 1][j], dp[i][j - 1]) if (s[i] != s[j])

C++: dp[i][j]

class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.size();
vector<vector<int>> dp(n, vector<int>(n));
for (int i = n - 1; i >= 0; --i) {
dp[i][i] = 1;
for (int j = i + 1; j < n; ++j) {
if (s[i] == s[j]) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][n - 1];
}
};

C++: dp[i]

class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.size(), res = 0;
vector<int> dp(n, 1);
for (int i = n - 1; i >= 0; --i) {
int len = 0;
for (int j = i + 1; j < n; ++j) {
int t = dp[j];
if (s[i] == s[j]) {
dp[j] = len + 2;
}
len = max(len, t);
}
}
for (int num : dp) res = max(res, num);
return res;
}
};

类似题目:

[LeetCode] 125. Valid Palindrome 有效回文

[LeetCode] 9. Palindrome Number 验证回文数字

[LeetCode] 5. Longest Palindromic Substring 最长回文子串

All LeetCode Questions List 题目汇总

[LeetCode] 516. Longest Palindromic Subsequence 最长回文子序列的更多相关文章

  1. 【LeetCode】516. Longest Palindromic Subsequence 最长回文子序列

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题思路 代码 刷题心得 日期 题目地址:https://le ...

  2. 516 Longest Palindromic Subsequence 最长回文子序列

    给定一个字符串s,找到其中最长的回文子序列.可以假设s的最大长度为1000. 详见:https://leetcode.com/problems/longest-palindromic-subseque ...

  3. [LeetCode] Longest Palindromic Subsequence 最长回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  4. Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)

    Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...

  5. [LeetCode] 5. Longest Palindromic Substring 最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  6. [leetcode]5. Longest Palindromic Substring最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  7. LN : leetcode 516 Longest Palindromic Subsequence

    lc 516 Longest Palindromic Subsequence 516 Longest Palindromic Subsequence Given a string s, find th ...

  8. 516. Longest Palindromic Subsequence最长的不连续回文串的长度

    [抄题]: Given a string s, find the longest palindromic subsequence's length in s. You may assume that ...

  9. [leetcode]516. Longest Palindromic Subsequence最大回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

随机推荐

  1. Linux 修改文件目录权限

    修改文件目录权限 chmod​ chmod u+x b.txt chmod 777 a.txt 修改文件的所有者和所属组 ​ 修改所有者chown beifeng a.txt 修改所属组chgrp b ...

  2. Charles 4.2.1 HTTPS抓包

    Charles 4.2.1 HTTPS抓包 Charles iPhone抓包 Mac必须与iPhone连接同一WiFi Proxy -> SSL Proxying Settings ->  ...

  3. 【后缀表达式求解】No.3.栈-evaluate-reverse-polish-notation题解(Java版)

    牛客网的题目链接 题目描述 Evaluate the value of an arithmetic expression in Reverse Polish Notation. Valid opera ...

  4. jpa之No property buyerOpenId found for type OrderMaster! Did you mean 'buyerOpenid'?

    java.lang.IllegalStateException: Failed to load ApplicationContext at org.springframework.test.conte ...

  5. 11.vue-router编程式导航

    页面导航的两种方式 声明式导航:通过点击链接实现导航的方式,叫做声明式导航 例如:普通网页中的链接或vue中的 编程式导航:通过调用JavaScrip形式的API实现导航的方式,叫做编程式导航 例如: ...

  6. python面试题&练习题之嵌套循环

    1.打印如下结果: 1*5=5 2*10=20 3*15=45 ... 10*50=500 for i in range(1,11): print(str(i)+'x'+str((i*5))+'='+ ...

  7. 【学习笔记】Kruskal 重构树

    1. 例题引入:BZOJ3551 用一道例题引入:BZOJ3551 题目大意:有 \(N\) 座山峰,每座山峰有他的高度 \(h_i\).有些山峰之间有双向道路相连,共 \(M\) 条路径,每条路径有 ...

  8. Problem I. Wiki with Special Poker Cards

    Problem I. Wiki with Special Poker CardsInput file: standard input Time limit: 1 secondOutput file: ...

  9. 复旦高等代数 I(16级)每周一题

    每周一题的说明 一.本学期高代I的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家: ...

  10. PKUWC2019 Round 2 没去祭

    因为今年有两场 PKUWC,所以叫 PKUWC2019 Round 2. 因为一些沙雕原因,今年去不了了. Day 0 一如既往,没有集训就去上数学课,今天讲几何变换,一如既往的只会说"少女 ...