[LeetCode] 32. Longest Valid Parentheses 最长有效括号
Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring.
Example 1:
Input: "(()"
Output: 2
Explanation: The longest valid parentheses substring is"()"
Example 2:
Input: ")()())"
Output: 4
Explanation: The longest valid parentheses substring is"()()"
这道求最长有效括号比之前那道 Valid Parentheses 难度要大一些,这里还是借助栈来求解,需要定义个 start 变量来记录合法括号串的起始位置,遍历字符串,如果遇到左括号,则将当前下标压入栈,如果遇到右括号,如果当前栈为空,则将下一个坐标位置记录到 start,如果栈不为空,则将栈顶元素取出,此时若栈为空,则更新结果和 i - start + 1 中的较大值,否则更新结果和 i - st.top() 中的较大值,参见代码如下:
解法一:
class Solution {
public:
int longestValidParentheses(string s) {
int res = , start = , n = s.size();
stack<int> st;
for (int i = ; i < n; ++i) {
if (s[i] == '(') st.push(i);
else if (s[i] == ')') {
if (st.empty()) start = i + ;
else {
st.pop();
res = st.empty() ? max(res, i - start + ) : max(res, i - st.top());
}
}
}
return res;
}
};
还有一种利用动态规划 Dynamic Programming 的解法,可参见网友喜刷刷的博客。这里使用一个一维 dp 数组,其中 dp[i] 表示以 s[i-1] 结尾的最长有效括号长度(注意这里没有对应 s[i],是为了避免取 dp[i-1] 时越界从而让 dp 数组的长度加了1),s[i-1] 此时必须是有效括号的一部分,那么只要 dp[i] 为正数的话,说明 s[i-1] 一定是右括号,因为有效括号必须是闭合的。当括号有重合时,比如 "(())",会出现多个右括号相连,此时更新最外边的右括号的 dp[i] 时是需要前一个右括号的值 dp[i-1],因为假如 dp[i-1] 为正数,说明此位置往前 dp[i-1] 个字符组成的子串都是合法的子串,需要再看前面一个位置,假如是左括号,说明在 dp[i-1] 的基础上又增加了一个合法的括号,所以长度加上2。但此时还可能出现的情况是,前面的左括号前面还有合法括号,比如 "()(())",此时更新最后面的右括号的时候,知道第二个右括号的 dp 值是2,那么最后一个右括号的 dp 值不仅是第二个括号的 dp 值再加2,还可以连到第一个右括号的 dp 值,整个最长的有效括号长度是6。所以在更新当前右括号的 dp 值时,首先要计算出第一个右括号的位置,通过 i-3-dp[i-1] 来获得,由于这里定义的 dp[i] 对应的是字符 s[i-1],所以需要再加1,变成 j = i-2-dp[i-1],这样若当前字符 s[i-1] 是左括号,或者j小于0(说明没有对应的左括号),或者 s[j] 是右括号,此时将 dp[i] 重置为0,否则就用 dp[i-1] + 2 + dp[j] 来更新 dp[i]。这里由于进行了 padding,可能对应关系会比较晕,大家可以自行带个例子一步一步执行,应该是不难理解的,参见代码如下:
解法二:
class Solution {
public:
int longestValidParentheses(string s) {
int res = , n = s.size();
vector<int> dp(n + );
for (int i = ; i <= n; ++i) {
int j = i - - dp[i - ];
if (s[i - ] == '(' || j < || s[j] == ')') {
dp[i] = ;
} else {
dp[i] = dp[i - ] + + dp[j];
res = max(res, dp[i]);
}
}
return res;
}
};
此题还有一种不用额外空间的解法,使用了两个变量 left 和 right,分别用来记录到当前位置时左括号和右括号的出现次数,当遇到左括号时,left 自增1,右括号时 right 自增1。对于最长有效的括号的子串,一定是左括号等于右括号的情况,此时就可以更新结果 res 了,一旦右括号数量超过左括号数量了,说明当前位置不能组成合法括号子串,left 和 right 重置为0。但是对于这种情况 "(()" 时,在遍历结束时左右子括号数都不相等,此时没法更新结果 res,但其实正确答案是2,怎么处理这种情况呢?答案是再反向遍历一遍,采取类似的机制,稍有不同的是此时若 left 大于 right 了,则重置0,这样就可以 cover 所有的情况了,参见代码如下:
解法三:
class Solution {
public:
int longestValidParentheses(string s) {
int res = , left = , right = , n = s.size();
for (int i = ; i < n; ++i) {
(s[i] == '(') ? ++left : ++right;
if (left == right) res = max(res, * right);
else if (right > left) left = right = ;
}
left = right = ;
for (int i = n - ; i >= ; --i) {
(s[i] == '(') ? ++left : ++right;
if (left == right) res = max(res, * left);
else if (left > right) left = right = ;
}
return res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/32
类似题目:
Different Ways to Add Parentheses
参考资料:
https://leetcode.com/problems/longest-valid-parentheses/
https://bangbingsyb.blogspot.com/2014/11/leetcode-longest-valid-parentheses.html
https://leetcode.com/problems/longest-valid-parentheses/discuss/14126/My-O(n)-solution-using-a-stack
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 32. Longest Valid Parentheses 最长有效括号的更多相关文章
- [leetcode]32. Longest Valid Parentheses最长合法括号子串
Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...
- 32. Longest Valid Parentheses最长有效括号
参考: 1. https://leetcode.com/problems/longest-valid-parentheses/solution/ 2. https://blog.csdn.net/ac ...
- [LeetCode] Longest Valid Parentheses 最长有效括号
Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...
- leetcode 32. Longest Valid Parentheses
Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...
- Java [leetcode 32]Longest Valid Parentheses
题目描述: Given a string containing just the characters '(' and ')', find the length of the longest vali ...
- LeetCode 32 Longest Valid Parentheses(最长合法的括号组合)
题目链接: https://leetcode.com/problems/longest-valid-parentheses/?tab=Description Problem :已知字符串s,求出其 ...
- 032 Longest Valid Parentheses 最长有效括号
给一个只包含 '(' 和 ')' 的字符串,找出最长的有效(正确关闭)括号子串的长度.对于 "(()",最长有效括号子串为 "()" ,它的长度是 2.另一个例 ...
- [LeetCode] 32. Longest Valid Parentheses (hard)
原题链接 题意: 寻找配对的(),并且返回最长可成功配对长度. 思路 配对的()必须是连续的,比如()((),最长长度为2:()(),最长长度为4. 解法一 dp: 利用dp记录以s[i]为终点时,最 ...
- [Leetcode][Python]32: Longest Valid Parentheses
# -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 32: Longest Valid Parentheseshttps://oj ...
随机推荐
- Java的POJO和JavaBean的区别
POJO Plain Ordinary Java Object,即简单的java对象. 特点 需要有一些 private 的参数,以及针对参数的 setter 和 getter 方法来访问这些参数. ...
- FreeMarker实现网页静态化
1.FreeMarker实现网页静态化. FreeMarker是一个用Java语言编写的模板引擎,它基于模板来生成文本输出.FreeMarker与Web容器无关,即在Web运行时,它并不知道Servl ...
- 最近在折腾在线编辑,研究了下Wopi,下面粘贴出自己Office Online Server2016搭建与部署
至少需要两台服务器,一台域控制器,一台部署Office Online Server https://docs.microsoft.com/zh-cn/officeonlineserver/office ...
- Winform中设置ZedGraph的字体和间距不随图形的缩放而缩放
场景 C#窗体应用中使用ZedGraph曲线插件绘制图表: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/99716066 Win ...
- ASP.NET MVC过滤器学习笔记
1.过滤器的两个特征 1.他是一种特性,可以引用到控制器类和Action方法上.比如下图 这里控制器类和action方法都引用了过滤器,这个过滤器是用来做授权的 2.特征继承自FilterAttrib ...
- mvc后台传到前台的值带html标签css(解决方法)
mvc后台传到前台的值带html标签css MVC中要用:@Html.Raw(后台数据库取的值); 或者MvcHtmlString.create();
- 如何down掉IB交换机口
服务器上找到需down的网络:ip a 通过ib命令iblinkinfo找到对应交换机以及在ib交换机上对应端口号 登录IB交换机,并通过命令:config进入配置模式 通过命令:port进入端口配置 ...
- 【maven】父子项目的一般姿势
一.为什么需要创建maven父子项目. 一般一个业务较多的项目,如果我们做服务拆分的话,有些公共的模块就只能做成jar包了.你将util.constant.model封装成jar包是比较好的,如果da ...
- JavaScript prototype原型用法
JavaScript对象原型 所有JavaScript对象都从原型继承属性和方法. <!DOCTYPE html> <html> <meta charset=" ...
- RV32I基础整数指令集
RV32I是32位基础整数指令集,它支持32位寻址空间,支持字节地址访问,仅支持小端格式(little-endian,高地址高位,低地址地位),寄存器也是32位整数寄存器.RV32I指令集的目的是尽量 ...