降智了……

当你走头无路的时候就应该知道瞎搞一个DP:

$p[i]$ 表示光射入第 $1$ 块玻璃时,从第 $i$ 块玻璃出去的光量。

$q[i]$ 表示光射入第 $i$ 块玻璃时,从第 $i$ 块玻璃出去的光亮。

为什么是第 $i$ 块呢?因为我们最后只关注 $p[n]$,所以我们关注的反射都是前 $i$ 块射向第 $i+1$ 块(也就是 $q[i]$)和从第 $i+1$ 块射向前 $i$ 块(也就是 $b_{i+1}$)。

初始状态 $p[1]=a_1,q[1]=b_1$。答案为 $p[n]$。

随便画个图得到转移:

$$p[i]=\dfrac{p[i-1]a_i}{1-q[i-1]b_i}$$

$$q[i]=b_i+\dfrac{q[i-1]a_i^2}{1-q[i-1]b_i}$$

时间复杂度 $O(n\log)$。可以做到 $O(n)$,但是懒得写了。

#include<bits/stdc++.h>
using namespace std;
const int maxn=,mod=,inv100=;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int n,a[maxn],b[maxn],f[maxn],g[maxn];
inline int add(int x,int y){return x+y<mod?x+y:x+y-mod;}
inline int sub(int x,int y){return x<y?x-y+mod:x-y;}
inline int mul(int x,int y){return 1ll*x*y%mod;}
inline int qpow(int a,int b){
int ans=;
for(;b;b>>=,a=mul(a,a)) if(b&) ans=mul(ans,a);
return ans;
}
int main(){
n=read();
FOR(i,,n) a[i]=mul(read(),inv100),b[i]=mul(read(),inv100);
f[]=a[];g[]=b[];
FOR(i,,n){
int inv=qpow(sub(,mul(g[i-],b[i])),mod-);
f[i]=mul(mul(f[i-],a[i]),inv);
g[i]=add(b[i],mul(mul(mul(a[i],a[i]),g[i-]),inv));
}
printf("%d\n",f[n]);
}

[BJOI2019]光线(DP)的更多相关文章

  1. [BJOI2019]光线(递推)

    [BJOI2019]光线(递推) 题面 洛谷 题解 假装玻璃可以合并,假设前面若干玻璃的透光率是\(A\),从最底下射进去的反光率是\(B\),当前的玻璃的透光率和反光率是\(a,b\). 那么可以得 ...

  2. [BJOI2019]光线——递推

    题目链接: [BJOI2019]光线 设$F_{i}$表示从第$1$面玻璃上面向下射入一单位光线,穿过前$i$面玻璃的透光率. 设$G_{i}$表示从第$i$面玻璃下面向上射入一单位光线,穿过前$i$ ...

  3. [BJOI2019] 光线

    看起来很麻烦,做起来并不难的题 以下设:$a_i=\frac{a_i}{100},b_i=\frac{b_i}{100}$ 显然,如果$b_i=0$的话,直接求$\Pi a_i$就是答案. 解决反射问 ...

  4. [BJOI2019]光线[递推]

    题意 题目链接 分析 令 \(f_i\) 表示光线第一次从第一块玻璃射出第 \(i\) 块玻璃的比率. 令 \(g_i\) 表示光线射回第 \(i\) 块玻璃,再射出第 \(i\) 块玻璃的比率. 容 ...

  5. luogu P5323 [BJOI2019]光线

    传送门 先考虑\(n=1\)的情况不是输入数据都告诉你了吗 然后考虑\(n=2\),可以光线是在弹来弹去的废话,然后射出去的光线是个等比数列求和的形式,也就是\(x_1\sum_{i=1}^{\inf ...

  6. 题解-BJOI2019 光线

    Problem loj3093 & x谷 题意概要:给定 \(n\) 块玻璃,每块玻璃有其折射比例与反射比例(折射比例+反射比例 不一定为 \(100\%\)),求从最上头打下一束光,有多少比 ...

  7. [洛谷P5323][BJOI2019]光线

    题目大意:有$n$层玻璃,每层玻璃会让$a\%$的光通过,并把$b\%$的光反射.有一束光从左向右射过,问多少的光可以透过这$n$层玻璃 题解:事实上会发现,可以把连续的几层玻璃合成一层玻璃,但是要注 ...

  8. BJOI2019 题解

    BJOI2019 题解 在更了在更了 P5319 [BJOI2019]奥术神杖 对\(V_i\)求个\(\ln\)变成了让平均数最大,显然套分数规划,然后ac自动机上面dp #include<b ...

  9. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

随机推荐

  1. 多维度对比5款主流分布式MQ消息队列,妈妈再也不担心我的技术选型了

    1.引言 对于即时通讯网来说,所有的技术文章和资料都在围绕即时通讯这个技术方向进行整理和分享,这一次也不例外.对于即时通讯系统(包括IM.消息推送系统等)来说,MQ消息中件间是非常常见的基础软件,但市 ...

  2. pytorch_13_pytorch 中tensor,numpy,PIL的转换

    PIL:使用Python自带图像处理库读取出来的图片格式numpy:使用Python-opencv库读取出来的图片格式tensor:pytorch中训练时所采取的向量格式 import torch i ...

  3. Oracle 增删改(INSERT、DELETE、UPDATE)语句

    Ø  简介 本文介绍 Oracle 中的增删改语句,即 INSERT.DELETE.UPDATE 语句的使用.是时候展现真正的技术了,快上车: 1.   插入数据(INSERT) 2.   修改数据( ...

  4. git 使用 tortoisegit 解冲突

    git 解冲突需要注意的问题 弄清除冲突双向的修改意图,并在解决冲突时,同时处理两边的意图. 举例说明 A.txt 文件, 在 master 分支上,有一行文字(代码)是这样: 这是一段在 maste ...

  5. 纯C语言实现链队

    #include <stdio.h> #include <stdlib.h> typedef int QElemType; typedef struct QNode{ QEle ...

  6. Java面向对象之泛型

    主要介绍: 认识泛型 构造方法中使用泛型 设置多个泛型 通配符 泛型接口 泛型方法 泛型数组 一.认识泛型 具体实例如下: package com.huolongluo.newfeatures; /* ...

  7. 考研辅助app的诞生!

    背景: 去年下半年由于种种因素驱动下,准备去考研,在之前同事的推荐下,参加了考研培训班,培训班发了纸质书籍和线上视频观看账号,由于线上视频需要全程联网才能观看,突发奇想,要是我把这些视频下载下来,没网 ...

  8. 电信NBIOT 5 - NB73模块下行测试(自己平台-电线平台-NB73)

    电信NBIOT 1 - 数据上行(中国电信开发者平台对接流程) 电信NBIOT 2 - 数据上行(中间件获取电信消息通知) 电信NBIOT 3 - 数据下行 电信NBIOT 4 - NB73模块上行测 ...

  9. 还学不会webpack?看这篇!

    摘要: webpack入门教程. 原文:还学不会webpack?看这篇! 作者:MudOnTire Fundebug经授权转载,版权归原作者所有. Webpack已经流行好久了,但很多同学使用webp ...

  10. CentOS7安装Oracle11gR2

     转自E路情人https://www.cnblogs.com/Q1013588888/p/9219128.html 一.安装CentOS-7_x86_64 1.CentOS7:带GUI的服务器(FTP ...