Given a binary tree, determine if it is a valid binary search tree (BST).

Assume a BST is defined as follows:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than the node's key.
  • Both the left and right subtrees must also be binary search trees.

Example 1:

Input:
2
/ \
1 3
Output: true

Example 2:

    5
/ \
1 4
  / \
  3 6
Output: false
Explanation: The input is: [5,1,4,null,null,3,6]. The root node's value
  is 5 but its right child's value is 4.

这道验证二叉搜索树有很多种解法,可以利用它本身的性质来做,即左<根<右,也可以通过利用中序遍历结果为有序数列来做,下面我们先来看最简单的一种,就是利用其本身性质来做,初始化时带入系统最大值和最小值,在递归过程中换成它们自己的节点值,用long代替int就是为了包括int的边界条件,代码如下:

C++ 解法一:

// Recursion without inorder traversal
class Solution {
public:
bool isValidBST(TreeNode* root) {
return isValidBST(root, LONG_MIN, LONG_MAX);
}
bool isValidBST(TreeNode* root, long mn, long mx) {
if (!root) return true;
if (root->val <= mn || root->val >= mx) return false;
return isValidBST(root->left, mn, root->val) && isValidBST(root->right, root->val, mx);
}
};

Java 解法一:

public class Solution {
public boolean isValidBST(TreeNode root) {
if (root == null) return true;
return valid(root, Long.MIN_VALUE, Long.MAX_VALUE);
}
public boolean valid(TreeNode root, long low, long high) {
if (root == null) return true;
if (root.val <= low || root.val >= high) return false;
return valid(root.left, low, root.val) && valid(root.right, root.val, high);
}
}

这题实际上简化了难度,因为有的时候题目中的二叉搜索树会定义为左<=根<右,而这道题设定为一般情况左<根<右,那么就可以用中序遍历来做。因为如果不去掉左=根这个条件的话,那么下边两个数用中序遍历无法区分:

20       20
   /           \
 20           20

它们的中序遍历结果都一样,但是左边的是 BST,右边的不是 BST。去掉等号的条件则相当于去掉了这种限制条件。下面来看使用中序遍历来做,这种方法思路很直接,通过中序遍历将所有的节点值存到一个数组里,然后再来判断这个数组是不是有序的,代码如下:

C++ 解法二:

// Recursion
class Solution {
public:
bool isValidBST(TreeNode* root) {
if (!root) return true;
vector<int> vals;
inorder(root, vals);
for (int i = ; i < vals.size() - ; ++i) {
if (vals[i] >= vals[i + ]) return false;
}
return true;
}
void inorder(TreeNode* root, vector<int>& vals) {
if (!root) return;
inorder(root->left, vals);
vals.push_back(root->val);
inorder(root->right, vals);
}
};

Java 解法二:

public class Solution {
public boolean isValidBST(TreeNode root) {
List<Integer> list = new ArrayList<Integer>();
inorder(root, list);
for (int i = 0; i < list.size() - 1; ++i) {
if (list.get(i) >= list.get(i + 1)) return false;
}
return true;
}
public void inorder(TreeNode node, List<Integer> list) {
if (node == null) return;
inorder(node.left, list);
list.add(node.val);
inorder(node.right, list);
}
}

下面这种解法跟上面那个很类似,都是用递归的中序遍历,但不同之处是不将遍历结果存入一个数组遍历完成再比较,而是每当遍历到一个新节点时和其上一个节点比较,如果不大于上一个节点那么则返回 false,全部遍历完成后返回 true。代码如下:

C++ 解法三:

class Solution {
public:
bool isValidBST(TreeNode* root) {
TreeNode *pre = NULL;
return inorder(root, pre);
}
bool inorder(TreeNode* node, TreeNode*& pre) {
if (!node) return true;
bool res = inorder(node->left, pre);
if (!res) return false;
if (pre) {
if (node->val <= pre->val) return false;
}
pre = node;
return inorder(node->right, pre);
}
};

当然这道题也可以用非递归来做,需要用到栈,因为中序遍历可以非递归来实现,所以只要在其上面稍加改动便可,代码如下:

C++ 解法四:

class Solution {
public:
bool isValidBST(TreeNode* root) {
stack<TreeNode*> s;
TreeNode *p = root, *pre = NULL;
while (p || !s.empty()) {
while (p) {
s.push(p);
p = p->left;
}
p = s.top(); s.pop();
if (pre && p->val <= pre->val) return false;
pre = p;
p = p->right;
}
return true;
}
};

Java 解法四:

public class Solution {
public boolean isValidBST(TreeNode root) {
Stack<TreeNode> s = new Stack<TreeNode>();
TreeNode p = root, pre = null;
while (p != null || !s.empty()) {
while (p != null) {
s.push(p);
p = p.left;
}
p = s.pop();
if (pre != null && p.val <= pre.val) return false;
pre = p;
p = p.right;
}
return true;
}
}

最后还有一种方法,由于中序遍历还有非递归且无栈的实现方法,称之为 Morris 遍历,可以参考博主之前的博客 Binary Tree Inorder Traversal,这种实现方法虽然写起来比递归版本要复杂的多,但是好处在于是 O(1) 空间复杂度,参见代码如下:

C++ 解法五:

class Solution {
public:
bool isValidBST(TreeNode *root) {
if (!root) return true;
TreeNode *cur = root, *pre, *parent = NULL;
bool res = true;
while (cur) {
if (!cur->left) {
if (parent && parent->val >= cur->val) res = false;
parent = cur;
cur = cur->right;
} else {
pre = cur->left;
while (pre->right && pre->right != cur) pre = pre->right;
if (!pre->right) {
pre->right = cur;
cur = cur->left;
} else {
pre->right = NULL;
if (parent->val >= cur->val) res = false;
parent = cur;
cur = cur->right;
}
}
}
return res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/98

类似题目:

Binary Tree Inorder Traversal

Find Mode in Binary Search Tree

参考资料:

https://leetcode.com/problems/validate-binary-search-tree/

https://leetcode.com/problems/validate-binary-search-tree/discuss/32101/My-java-inorder-iteration-solution

https://leetcode.com/problems/validate-binary-search-tree/discuss/32109/My-simple-Java-solution-in-3-lines

https://leetcode.com/problems/validate-binary-search-tree/discuss/32112/Learn-one-iterative-inorder-traversal-apply-it-to-multiple-tree-questions-(Java-Solution)

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 98. Validate Binary Search Tree 验证二叉搜索树的更多相关文章

  1. [leetcode]98. Validate Binary Search Tree验证二叉搜索树

    Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as ...

  2. [CareerCup] 4.5 Validate Binary Search Tree 验证二叉搜索树

    4.5 Implement a function to check if a binary tree is a binary search tree. LeetCode上的原题,请参见我之前的博客Va ...

  3. [LeetCode] Validate Binary Search Tree 验证二叉搜索树

    Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as ...

  4. 098 Validate Binary Search Tree 验证二叉搜索树

    给定一个二叉树,判断其是否是一个有效的二叉搜索树.一个二叉搜索树有如下定义:    左子树只包含小于当前节点的数.    右子树只包含大于当前节点的数.    所有子树自身必须也是二叉搜索树.示例 1 ...

  5. Leetcode98. Validate Binary Search Tree验证二叉搜索树

    给定一个二叉树,判断其是否是一个有效的二叉搜索树. 假设一个二叉搜索树具有如下特征: 节点的左子树只包含小于当前节点的数. 节点的右子树只包含大于当前节点的数. 所有左子树和右子树自身必须也是二叉搜索 ...

  6. [LeetCode98]98. Validate Binary Search Tree判断二叉搜索树

    判断二叉搜索树的方法是: 中序遍历形成递增序列 //全局变量记录中序遍历产生的序列,因为要递归,所以要用全局变量 List<Integer> list = new ArrayList< ...

  7. [LeetCode] Verify Preorder Sequence in Binary Search Tree 验证二叉搜索树的先序序列

    Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary ...

  8. [LeetCode] 255. Verify Preorder Sequence in Binary Search Tree 验证二叉搜索树的先序序列

    Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary ...

  9. [LeetCode] 99. Recover Binary Search Tree 复原二叉搜索树

    Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing ...

随机推荐

  1. Flask-Moment本地化日期和时间

    moment.js客户端开源代码库,可以在浏览器中渲染日期和时间.Flask-Moment是一个flask程序扩展,能把moment.js集成到Jinja2模板中. 1.安装 pip install ...

  2. IDEA不能读取配置文件,springboot配置文件无效、IDEA resources文件夹指定

  3. LinqToSql

    string connectionString = System.Configuration.ConfigurationManager.ConnectionStrings["ConsoleA ...

  4. XtraReport报表入库单数字转中文大写数字

    先看看打印入库单的效果图,看如下: 客户要求合计一行,要求大写中文数字.XtraReport报表是如何做出以上图的效果呢?因为是要把数字转成大写中文数字,得先准备数字转大写中文数字的函数.因网上有很多 ...

  5. Windows Service 服务搭配FluentScheduler实现定时任务调度

    Windows Service 服务 创建Windows Service 项目 创建一个Windows Service项目,并将项目名称改为 TaskWindowService 在解决方案资源管理器内 ...

  6. python——Tkinter图形化界面及threading多线程

    Tkinter模块("Tk 接口")是Python的标准Tk GUI工具包的接口.Tk和Tkinter可以在大多数的Unix平台下使用,同样可以应用在Windows和Macinto ...

  7. 基于vue+springboot+docker网站搭建【九】负载均衡

    后台mall-admin 负载均衡 1.新启动一个mall-admin docker实例 docker run -p 9002:9001 --name mall-admin-9002 --link m ...

  8. 前端开发JS——引用类型

    10.流程控制语句      注:var obj = {}:这里的obj转换boolean语句为true   if语句和java是一样的,判断条件也是根据上篇博客提到的假性值 // 弹出一个带输入框的 ...

  9. python从入门到放弃之进程进阶篇

    什么我们得了解清楚什么是进程,进程就是系统分配的一个资源单位,真正在程序中干活得是线程,默认是每个进程中都拥有一个线程 然后我们在了解下什么是进程池这个概念 进程池是的数量是取决于我当前电脑的逻辑处理 ...

  10. python从入门到放弃之守护进程

    # ### 守护进程 默认情况下,主进程要等待所有子进程执行完毕之后,才会关闭程序,释放资源守护进程进行在主进程代码执行结束之后,就直接关闭;守护进程守护的是主进程 语法: 进程.daemon = T ...