title: 【概率论】6-2:大数定理(The Law of Large Numbers)
categories:
- Mathematic
- Probability
keywords:
- Markov Inequality
- Chebyshev Inequality
- Sample Mean
- The Law of Large Numbers
toc: true
date: 2018-04-07 21:07:42


Abstract: 本文介绍马尔科夫不等式,切比雪夫不等式,样本均值,和大数定理的知识内容
Keywords: Markov Inequality,Chebyshev Inequality,Sample Mean,The Law of Large Numbers

开篇废话

最早做图像处理的时候建了一个QQ群,后来在里面认识了图像处理第一份工作的老板,后来离开了群,因为里面很多人基本都是来凑热闹的,所以质量堪忧,今天我又建了一个本博客的微信群,希望群内的同学们,能找到自己喜欢的方向,深入到自己热爱的领域,其实如果我的这些文字能帮助三五十个人,说实话,我自己感觉比那些小作坊身价过亿的小老板对社会的贡献更大一些。所以继续努力,戒骄戒躁。
想加入我们的同学,可以看目录页里面有进群的方法。

若干个拥有相同分布的独立随机变量的均值,被称为样本均值(“样本期望”等表述同一概念:Sample Mean),这些被选取出来的随机变量被称为样本。样本均值对于样本的信息描述,类似于一个分布的期望对这个分布的描述。注意这句话有两个信息:

  1. 我们前面介绍的均值,期望都是针对分布的。
  2. 样本的均值不同于分布的均值,但是有很多相似之处。

本节我们就会介绍一些结果来表明,“样本均值”和“组成随机样本的单个随机变量”之间的关系。

The Markov and Chebyshev Inequalities

在学习均值的时候讲到过有关重心类似的概念,也就是说当我们改变分布,让小概率对应一个大的值的时候,比如离散情况下随机变量值 {1,100,0.1}\{1,100,0.1\}{1,100,0.1} 对应于概率 {0.1,0.01,0.89}\{0.1,0.01,0.89\}{0.1,0.01,0.89} 这时的期望是 1×0.1+100×0.01+0.1×0.89=1.1891\times 0.1+100\times 0.01 + 0.1\times 0.89=1.1891×0.1+100×0.01+0.1×0.89=1.189 也可以说重心在1.189这个位置,如果我们调整下,让大的随机变量值对应到大概率 {1,0.1,100}\{1,0.1,100\}{1,0.1,100} 对应于概率 {0.1,0.01,0.89}\{0.1,0.01,0.89\}{0.1,0.01,0.89} 这时的期望是 1×0.1+0.1×0.01+100×0.89=89.1011\times 0.1+0.1\times 0.01 + 100\times 0.89=89.1011×0.1+0.1×0.01+100×0.89=89.101 显然这个重心发生了明显的偏移,但是我们有个新想法,如果我们有很多个离散随机变量值,或者是连续分布的随机变量,我们在固定分布均值的情况下,有多少随机变量值可以调整位置呢?

Markov Inequality

Theorem Markov Inequality.Suppose that XXX is a random variable such that Pr(X≥0)=1Pr(X\geq 0)=1Pr(X≥0)=1 .Then for every real number t>0t>0t>0 ,
Pr(X≥t)≤E(X)t
Pr(X\geq t)\leq \frac{E(X)}{t}
Pr(X≥t)≤tE(X)​

证明思路的话我们就用一个离散分布来证明上面这个不等式的正确性然后延伸到连续情况。
证明:

  1. 假设 XXX 有一个离散分布,其p.f.是 fff
  2. 那么 XXX 的期望是:
    E(X)=∑xxf(x)=∑x<txf(x)+∑x≥txf(x)
    E(X)=\sum_{x}xf(x)=\sum_{x<t}xf(x)+\sum_{x\geq t}xf(x)
    E(X)=x∑​xf(x)=x<t∑​xf(x)+x≥t∑​xf(x)
  3. 因为我们在条件中规定 X≥0X\geq 0X≥0 那么,上面的求和部分都是大于等于0的。
  4. 所以我们有:
    E(X)=∑x≥txf(x)≥∑x≥ttf(x)=tPr(X≥t)
    E(X)=\sum_{x\geq t}xf(x)\geq \sum_{x\geq t}tf(x)=tPr(X\geq t)
    E(X)=x≥t∑​xf(x)≥x≥t∑​tf(x)=tPr(X≥t)
  5. 根据 t&gt;0t&gt;0t>0 得出我们要的结论:
    E(X)≥tPr(X≥t)⇒Pr(X≥t)≤E(X)t
    E(X)\geq t Pr(X\geq t)\Rightarrow Pr(X\geq t)\leq\frac{E(X)}{t}
    E(X)≥tPr(X≥t)⇒Pr(X≥t)≤tE(X)​
  6. 证毕

完整原文地址:https://www.face2ai.com/Math-Probability-6-2-The-Law-of-Large-Numbers转载请标明出处

【概率论】6-2:大数定理(The Law of Large Numbers)的更多相关文章

  1. Law of large numbers and Central limit theorem

    大数定律 Law of large numbers (LLN) 虽然名字是 Law,但其实是严格证明过的 Theorem weak law of large number (Khinchin's la ...

  2. 中心极限定理 | central limit theorem | 大数定律 | law of large numbers

    每个大学教材上都会提到这个定理,枯燥地给出了定义和公式,并没有解释来龙去脉,导致大多数人望而生畏,并没有理解它的美. <女士品茶>有感 待续~ 参考:怎样理解和区分中心极限定理与大数定律?

  3. Markov and Chebyshev Inequalities and the Weak Law of Large Numbers

    https://www.math.wustl.edu/~russw/f10.math493/chebyshev.pdf http://www.tkiryl.com/Probability/Chapte ...

  4. 大数定律(Law of Large Numbers)

    大数定律:每次从总体中随机抽取1个样本,这样抽取很多次后,样本的均值会趋近于总体的期望.也可以理解为:从总体中抽取容量为n的样本,样本容量n越大,样本的均值越趋近于总体的期望.当样本容量极大时,样本均 ...

  5. uva10392 Factoring Large Numbers

    uva10392 Factoring Large Numbers 本文涉及的知识点是,使用线性筛选法得到素数表. Table of Contents 1 题目 2 思路 3 参考 1 题目 ===== ...

  6. [Typescript] Improve Readability with TypeScript Numeric Separators when working with Large Numbers

    When looking at large numbers in code (such as 1800000) it’s oftentimes difficult for the human eye ...

  7. [Reinforcement Learning] Model-Free Prediction

    上篇文章介绍了 Model-based 的通用方法--动态规划,本文内容介绍 Model-Free 情况下 Prediction 问题,即 "Estimate the value funct ...

  8. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 3 The law of averages, and expected values

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  9. [转]概率基础和R语言

    概率基础和R语言 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数据的爆发,R语 ...

随机推荐

  1. JSOI2019 Round2

    JSOI的题质量很高-- 精准预测(2-SAT.拓扑排序.bitset) 不难发现两个条件都可以用经典的2-SAT连边方式连边,考虑如何加入时间的限制.对于第\(x\)个人在\(t\)时刻的状态是生/ ...

  2. Docker安装带中文全文搜索插件zhparser的Postgresql数据库

    上一篇讲了在已经安装了PG数据库的情况下,安装全文搜索插件zhparser遇到的问题.在一个全新的环境中安装带有全文搜索插件zhparser的PG数据库,可以使用已经做好的Docker镜像,在安装的过 ...

  3. C#使用Linq to XML进行XPath查询

    最近在用到HtmlAgliltyPack进行结点查询时,发现这里选择结点使用的是XPath.所以这里总结一下在C#中使用XPath查询XML的方法.习惯了用Linq,这里也是用的Linq to xml ...

  4. java之struts2的action的创建方式

    首先action是用来处理请求的, 这里struts2中的action的3中创建方式. 1.无侵入性的创建方式. 无侵入性:使用第三方的框架,不直接继承或实现第三方提供的类或者接口就说是无侵入性的. ...

  5. 易百教程人工智能python修正-人工智能监督学习(分类)

    分类技术或模型试图从观测值中得出一些结论. 在分类问题中,我们有分类输出,如“黑色”或“白色”或“教学”和“非教学”. 在构建分类模型时,需要有包含数据点和相应标签的训练数据集. 例如,如果想检查图像 ...

  6. Unity VS2017 调试外部DLL

    之前写的C++ DLL VS2012 都可以附加进程的方式调试Unity中的调用 这次用了一个C# DLL VS2017 在Unity 2018上无法附加进程的方式调试 经过一番折腾, 主要是两个问题 ...

  7. 【转载】C#使用Math.Floor方法来向下取整

    在C#的数值运算中,有时候需要对计算结果舍去小数位保留整数位向下取整即可,此时就可使用内置方法Math.Floor来实现向下取整操作,Math.Floor方法将舍去小数部分,保留整数.Math.Flo ...

  8. js两个变量互换值

    js两个变量交换值 这个问题看似很基础,但是有很多的实现方式,你知道的有多少呢,网上也有很多的方法,下面就来总结一下 中间变量(临时变量) 临时变量其实很好理解,通过一个中间变量进行交换值 var s ...

  9. BIN文件合并烧写

    可以实现将Bootloader和Application合并烧写 使用UBIN.exe工具或者J-Flash工具 UBIN工具 选择Bootloader源文件 添加Bootloader源文件 选择App ...

  10. 七分钟理解 Java 的反射 API

    像java一样,一种具有反射功能的语言.允许开发人员在运行时检查类型.方法.字段.注解等,并在程序运行时决定是否使用. 为此,Java的反射API提供类,类,字段,构造函数,方法,注释和其他. 使用它 ...