题意:给定N点M边的无向连通图,每条边有两个权值(g,s)。 给定G,S。 让你给出一组(g0,s0)使得图中仅留下g<=g0, s<=s0的边之后,依然连通,并求Gg0+Ss0的最小值。 n<=200,m<=50000。

思路:枚举g0,求最小的s0,满足生成MST。 把边按g排序,一条边一条边的加入,然后在加入边的集合里面找出最小的s。但是每次排序复杂度过高,而且边数也过多,(LCT做也行吧,就不需要考虑这么多)。 我们去优化暴力的做法。假设新加入一条边,显然最多改变一条边,那么我们维护一个有序序列,表示MST用的边(N-1条),新加入后,手动排序(O(N)),然后把这N条边建立新的MST,就可以了。

#include<bits/stdc++.h>
#define ll long long
#define pair<ll,ll> pii
#define x first
#define y second
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
struct in{
int u,v;ll a,b;
}s[maxn];
bool cmp(in p,in q){
if(p.a!=q.a) return p.a<q.a;
return p.b<q.b;
}
int fa[maxn],q[maxn];
int find(int x){
if(x==fa[x]) return x;
return fa[x]=find(fa[x]);
}
int main()
{
int N,M,tot=; ll G,S,A=,B=,ans=-;
scanf("%d%d%lld%lld",&N,&M,&G,&S);
rep(i,,M){
scanf("%d%d%lld%lld",&s[i].u,&s[i].v,&s[i].a,&s[i].b);
if(s[i].u==s[i].v) i--,M--;
}
sort(s+,s+M+,cmp);
rep(i,,M){
q[++tot]=i; int t=tot;
while(t>&&s[q[t]].b<s[q[t-]].b) swap(q[t],q[t-]),t--;
rep(j,,N) fa[j]=j; tot=;
rep(j,,N) {
int fu=find(s[q[j]].u);
int fv=find(s[q[j]].v);
if(fu==fv) continue;
fa[fu]=fv;
q[++tot]=q[j];
if(tot==N-) break;
}
if(tot==N-){
if(ans==-) ans=G*s[i].a+S*s[q[N-]].b;
else ans=min(ans,G*s[i].a+S*s[q[N-]].b);
}
}
printf("%lld\n",ans);
return ;
}

CodeForces - 76A:Gift (最小生成树 解决单调性问题是思想)的更多相关文章

  1. CodeForces 76A Gift - 最小生成树

    The kingdom of Olympia consists of N cities and M bidirectional roads. Each road connects exactly tw ...

  2. CF76A.Gift [最小生成树]

    CF76A.Gift 题意:noi2014魔法森林弱化版QwQ,最小化\(max(g_i)*G + max(s_i)*S\)的最小生成树 考虑按g升序加边,用已在生成树中的边和新加入的边求当前最小生成 ...

  3. 利用Kruskal算法求最小生成树解决聪明的猴子问题 -- 数据结构

    题目:聪明的猴子 链接:https://ac.nowcoder.com/acm/problem/19964 在一个热带雨林中生存着一群猴子,它们以树上的果子为生.昨天下了一场大雨,现在雨过天晴,但整个 ...

  4. codeforces 1245D(最小生成树)

    题面链接:https://codeforces.com/problemset/problem/1245/D 题意大概是给你一些城市的坐标,可以在城市中建立发电站,也可以让某个城市和已经建好发电站的城市 ...

  5. CodeForces 141E: ...(最小生成树)

    [条件转换] 两两之间有且只有一条简单路径<==>树 题意:一个图中有两种边,求一棵生成树,使得这棵树中的两种边数量相等. 思路: 可以证明,当边的权是0或1时,可以生成最小生成树到最大生 ...

  6. 用DFS 解决全排列问题的思想详解

    首先考虑一道奥数题目: □□□ + □□□ = □□□,要将数字1~9分别填入9个□中,使得等式成立.例如173+286 = 459.请输出所有合理的组合的个数. 我们或许可以枚举每一位上所有的数,然 ...

  7. 解决分布式事务基本思想Base和CPA理论、最终一致性|刚性事务、柔性事务

    在学习解决分布式事务基本思路之前,大家要熟悉一些基本解决分布式事务概念名词比如:CAP与Base理论.柔性事务与刚性事务.理解最终一致性思想,JTA+XA.两阶段与三阶段提交等. 如何保证强一致性呢? ...

  8. Codeforces 840D Expected diameter of a tree 分块思想

    Expected diameter of a tree 我们先两次dfs计算出每个点能到达最远点的距离. 暴力计算两棵树x, y连边直径的期望很好求, 我们假设SZ(x) < SZ(y) 我们枚 ...

  9. bzoj 4660 Crazy Rabbit——LIS解决“相交”限制的思想

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4660 想到一个点可以用它与圆的两个切点表示.并想到可以把切点极角排序,那么就变成环上的一些区 ...

随机推荐

  1. Linux 就该这么学 CH02新手必须掌握的Linux命令

    0 概述 本章内容如下 强大的shell. 帮助文档命令(1) 系统工作命令(10) 系统状态监测命令(8) 工作目录切换命令(3) 文本文件编辑命令(9) 文件目录管理命令(7) 打包压缩或搜索命令 ...

  2. myeclipse的ctrl+f搜索面板功能详解

    1.查找/替换方向:Direction Forward:向前 Backward:向后 2.范围:Scope All:全部(当前文件) Selected lines:选中的几行 3.选项:Options ...

  3. nginx 反向代理报400错误与Host关系

    转载自:https://blog.csdn.net/qq_22208737/article/details/80787396 如果后端真是的服务器设置有类似防盗链或者根据http请求头中的host字段 ...

  4. python算法介绍:希尔排序

    python作为一种新的语言,在很多功能自然要比Java要好一些,也容易让人接受,而且不管您是成年人还是少儿都可以学习这个语言,今天就为大家来分享一个python算法教程之希尔排序,现在我们就来看看吧 ...

  5. Label&Button

    Button中的bg参数设置按钮背景颜色,fg参数设置字体颜色 pack中的fill参数告诉Packer让QUIT按钮占据剩余的水平空间,而expand参数则引导它填充整个水平可视空间,将按钮拉伸到左 ...

  6. ZYNQ笔记(0):C语言基础知识复习

    ZYNQ的SDK是用C语言进行开发的,C语言可以说是当今理工类大学生的必备技能.我本科学C语言时就是对付考试而已,导致现在学ZYNQ是一脸懵逼.现在特开一帖,整理一下C语言的基础知识. 一.定义 1. ...

  7. Partition5:Partiton Scheme是否指定Next Used?

    在SQL Server中,为Partition Scheme多次指定Next Used,不会出错,最后一次指定的FileGroup是Partition Scheme的Next Used,建议,在执行P ...

  8. quartz与c3p0冲突

    在SSM中使用连接池c3p0正常,引入quartz后发现后台报错 java.lang.AbstractMethodError: Method com/mchange/v2/c3p0/impl/NewP ...

  9. springboot使用HttpSessionListener 监听器统计当前在线人数

    概括: request.getSession(true):若存在会话则返回该会话,否则新建一个会话. request.getSession(false):若存在会话则返回该会话,否则返回NULL ht ...

  10. win7下scrapy1.3.2安装

    刚开始学爬虫,网上搜了搜,目前最合适的是选scrapy. 先要安装scrapy. 很多的博客上用的教程都说,scrapy目前对python3支持不是很好.可是不能不学3啊. 先用anaconda最新版 ...